
MASTERING MASTERING
CUSTOM FIELD CUSTOM FIELD
FORMULASFORMULAS

For the Users of All Desktop For the Users of All Desktop

Versions/Editions Supporting the FeatureVersions/Editions Supporting the Feature

Second EditionSecond Edition

Ismet KocamanIsmet Kocaman

inin

MicrosoftMicrosoft

Office ProjectOffice Project

SAMPLE

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

SAMPLE

	
	
	
	
	
	
	
	
	
	
	

Mastering	Custom	Field	

FORMULAS
in Microsoft® Office Project

	

Ismet Kocaman

SAMPLE

© Ismet Kocaman

Notice of Rights
All rights reserved. No part of this eBook may be reproduced, stored in a retrieval
system or transmitted in any form or by any means, without the prior written
permission of the author.

Notice of Liability
Every effort has been made to ensure the accuracy of the information herein.
However, the information contained in this eBook is provided without warranty, either
expressed or implied. The author will not be held liable for any damages to be caused
either directly or indirectly by the instructions contained in this eBook, or by the
application software described herein. The author provides formula examples for
demonstration only, without warranty either expressed or implied.

Trademark Notice
Microsoft is a registered trademark or trademark of Microsoft Corporation in the
United States and/or other countries. All other trademarks mentioned herein are the
property of their respective owners. The author has no affiliation with Microsoft
Corporation. Screen captures were reprinted with authorization from Microsoft
Corporation. This document is not a product of Microsoft Corporation.

SAMPLE

About the Author

Ismet Kocaman is a Management Consultant, Project Management Consultant,
Technical Project Manager and a Mechanical Engineer with over 20 years of
experience in the manufacturing sector.

He is currently providing management consultancy to the companies in the
manufacturing sector on system improvement projects and technical projects. He also
conducts training seminars for engineers on Project Management and MS Project
with focus on the project management process in the manufacturing environment.

He is a Project Management Professional (PMP) and holds several Microsoft
certifications on MS Project.

Visit the author’s website for more information at http://www.ismetkocaman.com

SAMPLE

SAMPLE

Contents
Introduction ___ 1

Getting Started __ 5
Creating a Formula in Project ... 5
Steps to Follow While Developing Formulas .. 10

Step #1: Determine whether you really need a formula.. 10
Step #2: Define output from the formula... 11
Step #3: Define input to the formula.. 11
Step #4: Determine which operations the expressions in the formula should perform on the
information inputted (or passed) ... 11
Step #5: Test the formula’s syntax and logic .. 12
Step #6: Document the formula ... 12

Fields in Project... 12
What is a field ? .. 12
What is a field reference in a formula ? ... 13
Properties of a Field.. 13

Field Names.. 13
Field Categories .. 14
Field Types.. 14
Entry Types ... 18

Formulas in Project __21
What is a Formula ? .. 21
Literals... 22
Operators .. 24

Arithmetic Operators.. 24
Comparison Operators ... 27
Logical Operators.. 28
Concatenation Operators ... 29
Operator Precedence ... 30

Built-in Functions __33
Built‐in functions for the custom fields .. 33
How to use a built‐in function in a formula .. 34
Function descriptions.. 37

How to interpret a function description... 38
Data Types .. 39
How to use data type information ... 41

How to handle the returned values based on the data type information............................... 41
How to handle the parameters based on the data type information...................................... 43

Working with String parameters .. 44
Working with logical values.. 45

Functions accepting logical values: iif and Switch functions.. 45
Functions returning logical values.. 49

Using the Choose function.. 53
Constants Recognized in Formulas... 55

Settings for the Custom Fields __57
How to Delete or Disable a Formula, How to Clear or Protect a Custom Field’s Data 57

SAMPLE

vi Mastering Custom Field Formulas

How to Import a Custom Field .. 58
Custom Fields in Summary Rows .. 58

Rollup Methods .. 62
Graphical Indicators .. 64

Special Operators: Like and Between…And __________________________69

Inserted Projects and the Custom Fields______________________________73

Errors in Formulas__79
Logical Errors... 79
Syntax Errors ... 84
#ERROR Errors... 86

How to filter for #ERROR lines in custom fields ... 88

Working with Custom Flag and Text Fields___________________________91
Returning Numeric, Date or Logical Values to the Custom Text Fields .. 94
The built‐in functions for handling text information .. 98

The StrConv function .. 98
The StrComp function... 99
The InStr function ... 100
Using Str, CStr and Format functions in formulas ... 101

Format expressions used in the Format function .. 103

Working with Custom Number and Cost Fields ____________________ 111
How to enter values to the custom number and cost fields by typing in....................................... 111
How do the custom number and cost fields interpret the values returned from the formulas 113
Rounding Numbers in Formulas ... 115

How does Project round off the numeric data in the custom fields .. 115
Using the built‐in functions to round off the numeric data ... 118

Using the Int or Fix function to truncate the numbers .. 118
Using the Int function to round up the numbers in formulas.. 119
Using the Int and Fix functions to arithmetically round the numbers off.............................. 120
Some examples of custom rounding on monetary values... 121
Rounding off to the nearest even integer.. 122
Implementing Excel’s worksheet function Mod in formulas ... 123
Implementing the round‐half‐to‐even algorithm in formulas ... 123

Working with Duration and Work Data ____________________________ 127
Duration Type Fields in Project ... 127
How to enter duration and work values in Project... 129

Customizing Project’s default time units.. 129
Customizing the time unit labels .. 130
How does Project display values in the duration type fields ?... 131

How does Project determine the conversion factors between the units ?.................................... 131
How can we change the conversion factors between the units ? .. 132
How are the duration and work data stored in the duration type fields ?..................................... 133
How to pass the conversion factors to formulas .. 135

Using ProjDurConv or ProjDurValue functions to access Days per month setting in a formula 135
How does it affect the schedule if we change “Hours per day” value ?... 136
Changing the default units in a project plan containing duration and work data.......................... 138
Limits for the Duration type fields .. 139
Built‐in Functions used in Duration and Work Calculations ... 142

SAMPLE

Contents vii

Some Examples with Duration Type Fields... 142

Working with Dates and Times______________________________________ 145
Customizing Project’s default date display format... 145
Default time values ... 147
How to enter date and time in Project ... 148
The Date Type fields in Project ... 149

Referencing the date type task fields in formulas ... 150
Referencing the date type resource fields in formulas .. 151
Using the fields listed under the Project / Date category in formulas................................... 152

How does Project store date and time values ? ... 153
Date field limits... 156

Date and Time Functions .. 158
Date, Time, Now and Timer Functions ... 159
Year, Month and Day Functions ... 160
Hour, Minute and Second Functions .. 161
Passing Dates to Functions As Parameters... 161

Using Date Strings to Pass Dates to Functions... 161
Using Date Literals to Pass Dates to Functions .. 163
Date Separators.. 165

DateSerial Function .. 165
CDate Function ... 167
DateValue Function .. 169
TimeValue Function.. 170
TimeSerial Function .. 171
DateDiff and DatePart Functions.. 172

Week and Weekday Number Calculations with DatePart and DateDiff 175
Using date arithmetic in week calculations.. 179
Calculating Quarters ... 179
Weekday, WeekdayName and MonthName Functions ... 180
What is the First Day of the Week ? ... 181
Calculating the start and end dates of a week based on a date... 183
Using a formula to display the system’s first day of week setting ... 185
What is the First Week of the Year ? .. 185
Calculating Week Number of a Date .. 187
DateAdd Function... 189
Using Today, Tomorrow and Yesterday in Formulas.. 190

Comparisons and arithmetic operations with dates and times.. 190
Using Hardcoded Dates and Times in Formulas ... 192
Setting a Date Field’s Value to NA.. 194
Handling the Initial Value “NA” of a Date Field in Formulas .. 194

Numeric Comparisons to Test for NA... 195
Using IsDate Function To Test for NA... 196
Other Methods to Test for NA ... 196

Working with times... 197
How to compare times in Formulas ... 197

Referencing the default start time in a formula .. 197
How much precision do we need in the time serial ? .. 197
Comparing times .. 198
Other methods to compare times.. 198

SAMPLE

viii Mastering Custom Field Formulas

Working with Manually Scheduled Tasks___________________________ 201
What is a placeholder task ? ... 201
Formulas performing operations based on task mode... 203

Formulas working only for manually scheduled tasks.. 203
Processing text information (including blank) of a placeholder task..................................... 203
Processing valid duration or start/finish date values of a manual task 204

Formulas working only for auto‐scheduled tasks... 206
Formulas performing operations on tasks in any task mode ... 207

The New Baseline Fields.. 207
Calculating the variances for manually scheduled tasks .. 208
Formulas to see how the text information in the fields Duration, Start or Finish changes 214

The Built-in Functions in Project Category _________________________ 219
Date Separators Used in Date Strings Passed to Functions.. 219
Pj Enumeration Constants Recognized in Formulas ... 220
ProjDurValue function .. 225
ProjDateConv Function ... 225
ProjDurConv function ... 227
ProjDateAdd and ProjDateSub Functions ... 230
ProjDateDiff Function ... 232
ProjDateValue Function .. 235

Using ProjDateValue to Test for NA ... 238

Index __ 239

SAMPLE

Introduction

This book has been prepared for readers, who currently have skills to use Project as a planning
and scheduling tool in managing projects; and who also want to learn how to make effective use
of the custom field formulas (also referred to as user-defined formulas or just as formulas) while
working on the project data.

The content of this book is only related to processing a project’s task and resource data by using
custom field formulas, therefore no part of this book covers the topics related to managing
projects with Project. The author assumes that the reader has some basic math knowledge and
skills to write formulas or expressions for other purposes, and is able to extend that knowledge
and skills to write formulas in Project by using the built-in functions mentioned and the
techniques explained in this book.

Even though Project contains plenty of the data fields of various types and categories presenting
the planned, scheduled and actual project data interpreted in many different ways to the users,
one might still need some custom information that is not directly available in the existing fields.
Project is a highly customizable application such that it enables us to build our own formulas in
the custom fields in order to perform further operations on the existing data to produce some
new data needed. This feature was added to the product with the version, Project 2000.

In Project, there are, of course, several other ways to calculate custom data. For example, the
existing project data can be processed by using VBA code, or exported to Excel for processing
further by using Excel’s tools, in order to generate the new data needed. On the other hand, none
of these methods, if not chosen by personal preference, would be more practical to implement
than using formulas, provided that a solution by using the custom field formulas already exists in
a particular case. It is not required to have programming skills in order to be able to develop and
maintain the custom field formulas. Besides we do not need to leave the current Project view to
input data to and test the formulas. No further action of the user is required to recalculate the
formulas when the data referenced change in a project plan, since Project automatically re-
evaluates the custom field formulas and refreshes the associated fields with the resulting data
accordingly.

As mentioned above, the custom field formulas are mainly used to calculate some custom
schedule or cost data that is not available in a project plan. There are many other useful
applications of the formulas, such as displaying a field’s data stored in the background when we
want to understand how Project performs certain calculations. Other than that, there may be
cases where the data calculated are not used literally, but instead, the results of the formulas are
used to filter, group or sort the project data, based on one or more criteria. And also multiple
conditions in one or more filters can be combined into a single formula which helps us to
immediately identify the tasks or resources satisfying all these conditions. In a manner, they work
like always-active filters.

We must constantly monitor the schedule, work and cost performance of a project during the
implementation phase otherwise we cannot take timely actions to avoid problems that have
potential to cause delays and/or budget overruns. Formulas may be created to evaluate the
schedule, work and cost performance of a project. Then the results, combined with the other
progress related information collected, can be interpreted further to determine the overall status

SAMPLE

2 Mastering Custom Field Formulas

of the project. As a result, a performance check formula is the one created to constantly watch
whether a certain schedule or cost data in a task or resource field of the current project plan
meets a condition. The condition may be composed of a single comparison expression testing a
field’s value against a certain threshold value that we specify or may be a combination of several
other conditions testing whether a field’s value falls into a range that we specify. In both cases,
the formula produces a single result. In the former one, the result represents either one of a two-
state information, such as Yes and No, where use of a flag field suffices. But in the latter case, the
result represents multiple-state information, therefore, a non-flag type custom field should be
used to display the returned values. In both cases, the custom field with formula can be set to
display graphical indicators since visual representation of the data enables us to immediately see
the items requiring attention, that would otherwise be difficult without a filter, for example, while
working on a long task or resource table. We will cover how to define graphical indicators by
using the Custom Fields dialog box later.

The purpose of this book is not to discuss when a project is considered as well-performing, and
then how performance check criteria (or conditions) can be defined in a formula, based on that
information. Instead, we will focus on how to use field references and functions to build custom
field formulas processing project’s task or resource data to produce accurate results. Once you
learn how to build formulas correctly by using this book, you can easily develop your own set of
formulas performing certain checks on any schedule.

Although it is also outside the scope of this book, formulas can be created to perform the
schedule quality assessments. These formulas are used to check to see whether the structure and
elements of a schedule are in conformance with certain standards or guidelines. Then if required,
the schedule is further fine-tuned to meet the criteria specified by the standard, based on the
results of the formulas. The schedule quality assessment is continuously conducted on a schedule
at all phases of a project, as part of the schedule development and maintenance process. Note
that it may not be always possible to convert a schedule quality assessment criterion to a
condition tested by a custom field formula. For example, parsing predecessors or successors field
for link types, lags or leads for some checks is not possible by using formulas since a formula
cannot loop through the delimited list of the items in these fields. Although formulas offer a
limited capability on this area, they prove useful for many checks.

Project’s backward compatibility and multi-language support features handle the conversions for
the components of the formulas while saving the current file to the file format of the previous
versions or opening a file from the file format of the earlier versions, or while opening a project
plan file created by using a version of the product installed in a system with a different locale. But
it is strongly recommended that you always check the custom field formulas to ensure that they
return the results as expected after these operations. Note that Project does not change the
strings, that is, any text enclosed in double quotation marks, in formulas.

The name “Project” will be used throughout the book in place of the complete product name. The
term “formulas” is to be used throughout the book as the plural form of “formula”, instead of
“formulae”. The fields other than the custom fields are referred to as “non-custom fields” or
“regular fields” (which are not technical terms) when we need to differentiate them from the
custom fields in the context.

SAMPLE

Introduction 3

All the formulas have been tested with the latest standalone desktop version of the product that
exists at the time of producing this book; it is the version 1910 (Build 12130.20410 C2R) of MS
Project Professional 2019. Beware that the results from the formulas may change as the product is
updated with the new public updates or service packs released, or when the formulas are used in
the future versions of the product. The formulas presented in this book can also be used in the
previous versions of the product such as 2003 and 2007; especially, the users of the versions prior
to 2013 may find some formulas (that is, the ones working similar to some built-in interactive
filters of the version 2013 and later) quite useful. But note that displaying some of the formula
results in the graphical reports is only possible in the versions 2013 and later, and the formulas
handling data of the manually-scheduled tasks can be used only in the versions 2010 and later.

SAMPLE

4 Mastering Custom Field Formulas

SAMPLE

Getting Started

In this first section of the book, we will explore the basics of a formula in Project. Let us get
started with creating a simple formula as an example and then discuss some basic concepts as we
proceed through the steps in the example.

Creating a Formula in Project

In Project, we cannot type in a formula directly into a custom field, or into the entry bar. We have
to use commands and dialog boxes for this purpose. A custom field that does not contain any
formula is, of course, available to enter information by typing in. Once we have entered a formula
to a custom field, the field is then closed for entries by typing in, and it only displays the results of
the formula.

In the example below, we will create a simple formula in order to demonstrate how to enter
formulas to the custom fields and to explain how the formulas work in Project, so follow the steps:

 Start Project. Project automatically opens a blank project file and displays the default view;
that is, the Gantt and with Timeline view, in versions 2010 and later, which contains the
Gantt Chart view in the bottom pane. We will now work in the default task table displayed
(i.e., the Entry table) on the Gantt Chart view.

 Insert the custom text fields, Text1 and Text2 into the blank task table to any column

position that you like. And enter the text Hello, World ! into the Text1 field in the first
row of the task table; Project will automatically create the first task entry in the task table.

Note that it is not required to display a custom field in a table to enter a formula for that
custom field. Project will evaluate the formulas in the hidden custom fields too.

Sometimes, a long formula in a custom field is divided into small formulas to overcome a
limitation; at other times, a complex formula is divided into small formulas to manipulate
it easily during the tests. In either case, the other custom fields used to enter the small
formulas are referred to as intermediate fields. You can hide the intermediate custom
fields when you are done with testing the formula.

 The Custom Fields dialog box is the only place where we enter the formulas and adjust
all the settings related to the custom fields (we will explore the sections of this dialog box
in detail, later). Therefore, we need to open this dialog box in order to enter the formula
for the Text2 field. There are four alternative ways to open the Custom Fields dialog box,
as follows:

 Clicking the Custom Fields button in the Properties group of the PROJECT tab on
the Ribbon

 Selecting the Custom Fields command in the shortcut menu opened by
right-clicking any column header in a task or resource table

 Hitting the keys Alt, r and f successively
 The Custom Fields command button can be added to the Quick Access Toolbar

SAMPLE

6 Mastering Custom Field Formulas

If you open the dialog box while Project’s focus is set to a custom field in a task or
resource table (that is, while a cell in a custom field’s column is selected), then the dialog
box is opened for that custom field; otherwise, it is opened for Text1.

 In the dialog box opened, you will see two option buttons representing two categories of
the custom fields, in the Field section on the top of the dialog box; namely, Task and
Resource (the Project option button has no use in the standalone desktop products).

Project automatically selects the option button, according to the category of the project
data focused on, in the active view; therefore, the Task option button will be automatically
selected now.

Always verify that the currently selected option button corresponds to the category of the
custom field for which you want to enter the formula, and if not, change it to the other
one. In this example, we will work with the task custom fields, therefore we can keep the
current selection of the option button.

In the dialog box opened, you will also see that the Text2 field has already been
highlighted in the Field box of the Field section, for your convenience.

 The option None is selected by default in the Custom attributes section. Now click the
Formula… button to open the Formula dialog box (there is no need to select the related
option button first). The title of the dialog box shows Formula for ‘Text2’. Here, any
expression that you enter into the Edit formula box is referred to as a custom field
formula.

SAMPLE

Getting Started 7

Note that holding down the Alt key while pressing r, f and u successively opens the
Formula dialog box quickly. The entry bar does not show the formula entered. We need
to open the Formula dialog box again to review a formula entered.

 Enter the text [Text1] into the entry box as it is shown below. The field name enclosed in
square brackets is called a field reference. You have just created a custom field formula
containing a reference to a field now.

The Field button can also be used to insert a field reference into a formula. Project
automatically attaches the enclosing brackets to the field name when the field reference is
inserted through the Field button. And doing so also avoids the typing mistakes in the
field name, and additionally, you will have a chance to cross-check the type of data which
this field is expected to return to the formula by looking at the category name which the
name of the field is placed under. For example, you will find the Type field under the
Number category of the Field button while creating a resource custom field formula, since
the Type field returns a numeric value representing the resource type. As a result, any
reference to the Type field in a formula should be handled as a numeric value.

Note that the commands to cut, copy and paste the information can be used in the Edit
formula box. While entering long formulas by typing in, do not hit <Enter> to continue
with the next line in the Edit formula box. Instead, just keep typing in so that the entry
automatically proceeds with the next line. A formula will constitute a single line, no matter
how long it is. Sometimes, you may paste a long formula copied from a text editor into
the Edit formula box. In this case, you do not need to worry about the spaces or the extra
empty lines in the formula since Project automatically converts the entry to a single line
formula and removes the empty lines and the extra spaces unless they are inside the
double quotation marks.

Although it is not possible to change the font and the font size setting for the Edit
formula box, we can always create the formula in a text editor and then copy/paste it.

 Click OK when you are done with entering the formula. Project now displays a dialog box
with the warning message shown below:

Existing data in the “Text2” field will be deleted because all values will now be calculated by
the formula.
To replace all data in the “Text2” field with the new calculated values, click OK.
To return to the Formula dialog box, click Cancel.

SAMPLE

8 Mastering Custom Field Formulas

The purpose of this message is to prevent you from accidentally overwriting the existing
data in the custom field by the results from the formula. If this is the case, or if you decide
to keep the existing data in the custom field, then clicking Cancel returns you to the
Formula dialog box, so that you can click Cancel again in order to close the Formula
dialog box. This action automatically empties the Edit formula box and keep the existing
data in the custom field. Otherwise you can proceed with clicking OK.

It is important to note that the Undo command does not work, once the formula
overwrites the existing data.

Project automatically turns the option button of the Formula… button on (i.e., the radio
button) as soon as the Formula dialog box is closed. You can now select None to disable
the formula but keep it in the Edit formula box; and then selecting the option button
without directly clicking the Formula… button in order to enable the formula will trigger a
dialog box with the following message:

Any existing data in the “Text2” field will be discarded as all values will now be calculated by
the formula.
To enable the formula and replace all data in the “Text2” field with the calculated values,
click OK.

Clicking OK in the dialog box will simply turn the option button on, thus enabling the
formula entered previously. Note that clicking the Formula… button will bypass this
warning message and open the Formula dialog box with the formula.

Project is not sensitive to case in formulas, except for the text enclosed in double
quotation marks. Therefore entering, for example [tEXt1], does not create a syntax error.
Project automatically changes it to [Text1] while evaluating the formula, so you will see
[Text1] when you re-open the formula box.

Note Be careful while editing formulas since the Undo command will not undo any
changes that you have done in the formula. Therefore, always keep a copy of the previous
formula somewhere else while making a major editing in the current one.

 Keep all the default settings in other parts of the dialog box. We will discuss the function

of each control in detail, later. Click OK again to close the Custom Fields dialog box.

Note that saving a formula is a two step process; first, closing the Formula dialog box,
and then closing the Custom Fields dialog box. Project performs a syntax check in
between those two steps; if the formula passes the syntax check, then Project accepts the
formula.

 You are now back to the task table. The Text2 field now displays the message that you
have previously entered to the Text1 field in the first row of the table; if so, then the
formula is working.

Note that Project does not show any indicator to tell us which custom fields in the table
have formulas. When you click any cell in a custom field’s column, the entry bar will be
closed for entry, if the field contains a formula. And also the entry bar will display the
information that it gets from the cell in gray color. Therefore, it will make working on a
schedule easy, if you rename the custom fields in a way to give information on the

SAMPLE

Getting Started 9

calculated content. Keeping the mouse pointer over the column header of the renamed
custom field opens a ScreenTip that shows the actual custom field name in parentheses
(See the ScreenTip style box in General tab of the Project Options dialog box)

 In order to test the formula further, let us create another task in the project plan. Instead
of entering a task name, just enter the text Hello, World !!! into the Text1 field in the
second row of the task table. Project will automatically create another task entry and the
Text2 field will also display the text Hello, World !!! as shown below:

In demonstrations, instead of screen captures like the one above, we will use the following
representation which hides the irrelevant details of the tasks or the resources:

Task table
Text1 Text2

Hello, World ! Hello, World !
Hello, World !! Hello, World !!

Text1 field : <enter text by typing in>
Formula:
Text2 field : [Text1]

Note in the screen capture above that the column headers of the custom text fields have
been renamed by using the Field Settings dialog box. These new titles will be visible only
in that particular table.

You can rename the custom fields by using the Rename button in the Custom Fields
dialog box. Renaming the custom fields by descriptive names provides some benefits as
follows: the new name is recognized in the formulas (Project replaces the new name with
the actual custom field name as soon as you save the formula), and it is easy to find the
custom field name while scrolling through the names in the Field box of the Custom
Fields dialog box, and also a custom name will remind you the purpose of the formula.

On the other hand, Project displays the name entered to the Title box of the Field
Settings dialog box in the column header, even when you have already renamed the
custom field with a different name in the Rename Field dialog box.

We will discuss all the controls in the Custom Dialog box later in detail.

Important Note In order to avoid destroying the project data accidentally while going
back and forth between the dialog boxes, create new formulas in the backup copy of the
original project plan file, and transfer them to the original file after having done all the
tests.

Almost any long formula composed of nested expressions looks complicated without proper
formatting. Creating, editing or reviewing a formula can be performed outside the Formula
dialog box, for example, in a word processor, and then the formula can be copy/pasted back to
the Edit formula box. Project automatically removes extra spaces and lines among the elements of
the formula while saving by clicking OK if its syntax is correct. But there is an exception; the

SAMPLE

10 Mastering Custom Field Formulas

strings (that is, the characters enclosed in the double quotation marks) divided into multiple lines
while editing a formula outside the Formula dialog box must be combined into a single line
before copy/pasting the formula to the Edit formula box since it is not done automatically. And
also it may sometimes be required to overwrite the quotes and dashes with the same characters
in the Edit formula box in order to fix the character code problems causing syntax errors in the
copy-pasted formulas.

Steps to Follow While Developing Formulas

The following six step procedure outlines the phases of developing a custom field formula. We
have just discussed how to enter a simple formula in the previous section, but we have not yet
covered any detail topic related to developing formulas. Therefore, if you want, you can skip this
section for now and continue reading from the next section (that is, Fields in Project) and then
return here after studying the whole book. This book presents all the information that you need
to create custom field formulas by following these six steps.

Step #1: Determine whether you really need a formula

Before attempting to develop and use a formula, first perform several checks in order to decide
whether you really need a formula in your particular case. Read the possible scenarios listed
below:

 You may need to produce some new data from the current project data by using a custom
field formula; in this case, review task and resource fields available in Project since the data
that you want to produce may already exist in one of these fields. For example, you do not
need to calculate the difference between the baseline start date and the current start date
of a task to find the slippage amount in working days (based on the project calendar or task
calendar) since there is a start variance field, Start Variance which contains this
information. But you must use a formula to see the variance in calendars days.

 You may need to interpret the project data in a different way by reformatting the existing

data; for this purpose, a conversion formula may be used, but first check Project’s
formatting capabilities since Project may already have a feature to format the data in the
way that you want. For example, you may want to display the dates in a table in a format
different than the default one. Before creating a formula to format dates, check all the date
display formats available in Project (see the Date format box on General tab of the Project
Options dialog box) since the format that you need might be one of the formats available.

 You may use a formula to perform tests on tasks or resources in order to identify the tasks

or resources whose data satisfies certain conditions; then the results from the formula can
be used for filtering or grouping purposes. Before doing this, always review the built-in
task/resource filters and groups (and also see AutoFilter’s filters and groups), since a filter
or group that suits your needs may already be included in Project.

But suppose that you want some graphical indicators that will alert you immediately when a
certain task or resource data exceeds a predefined threshold value in a project plan. This
cannot be achieved by a highlight filter since filters require user’s action to trigger filtering
operation. In this case, you must create a custom field formula which constantly watches
and evaluates the related task or resource data and then displays the results by the
graphical indicators defined.

SAMPLE

Getting Started 11

Also note that, most of the time, you do not need a complex formula since graphical
indicators can be defined for a custom field referencing the target field; in this case,
conditions tested against the value of the target field in the indicator table do the same job
as the test expressions in the formula.

At this point, suppose that you cannot find what you need in Project after having read all
the paragraphs above, then proceed with Step #2.

Step #2: Define output from the formula

 What output do you want from the formula ? Is it a numeric value, text information, date

and time information, a duration or work value, or a logical value such as Yes and No ?
 Then decide which custom field can properly hold and display the data returned from the

formula. Always check whether the data returned from the formula needs to be converted
to the type of data expected by the custom field. Most of the time, you want to apply some
sort of conversion to the data returned from the formula in order to display it in a particular
format in the custom field. You may also decide to return the output to a custom text field
since it can display any type of data even without a data type conversion.

 Also check whether the data returned from the formula falls into the range of valid values
accepted by the custom field selected.

At this point, you are expected to know which custom field is going to be used to enter the
formula.

Step #3: Define input to the formula

 Determine what data you need to process in the formula in order to obtain the result that
you want; that is, which fields to reference, functions to reference, and literal data to use.

At this point, you are expected to know all the elements of the formula.

Step #4: Determine which operations the expressions in the formula
should perform on the information inputted (or passed)

 Decide whether you need to verify the data hold in the fields referenced before attempting
to access the fields’ data from the formulas.

 Decide whether you need to apply conversion to the data referenced; that is, literal data or
the data returned from the fields or the functions. If you are not sure what type of data the
field stores on the background or a function returns, then you can create a temporary
formula referencing to that field or to the function in another custom field and see the
result displayed, before using it in the formula.

 Determine how to combine all the elements of the formula in expressions. That is,
determine what operations you need to perform on these elements that provide the data
input to the formula in order to obtain the output desired.

At this point, you can create the expressions required to built the formula. Note that you
can use a pencil and paper or an application such as Notepad until you reach at the point
where you are ready to enter the formula to the custom field.

SAMPLE

12 Mastering Custom Field Formulas

Step #5: Test the formula’s syntax and logic

 Enter the formula to the custom field. At this point, you will know whether the formula has

been entered correctly or not (that is, there is no syntax error), if Project allows you to save
the formula.

 Insert the custom field containing formula, and all the fields referenced in the formula to a
test table.

 Test the formula by manually populating the fields that the formula references with the
data representing all possible scenarios (you can temporarily substitute intermediate
custom fields in place of the fields referenced). And verify the results obtained by
comparing them with the expected ones.

After having tested the formula with all possible data input scenarios, you now know that
the formula logic produces accurate results.

Step #6: Document the formula

 Even if you are the only one using the formula, document how it works for future

reference and maintain a version history describing all the modifications done on the
formula.

Documenting the formulas and keeping a record of the formula revisions will help you to
remember your previous work on the formula when you need to modify it or fix an error
occurred after having used the formula for a while. Also other users of the project plan file
containing formulas may benefit from such documents when trying to understand how
the formulas in the project plan file work.

Fields in Project

As it is seen in the example above, the custom field formulas operate on the project data that the
fields hold. For this reason, first of all, we must understand what a field is in Project, in order to
build accurate formulas.

What is a field ?

In Project, a field is a cell at the intersection of a row and a column in a table, a named box in a
form, or any other location in a view, which contains the project data that is either input by the
user or calculated by Project’s scheduling engine for a task, resource or assignment.

Note In this book, as it is seen in the paragraph above, a field has been defined as a
project data entry and display area in the user interface (that is, a location in a view).
Depending on the context, a field may have a different definition in terms of databases.

All the complex data management operations on the fields are handled by Project in the
background, therefore a user does not need to worry about the operating system and the
application level details regarding how the project data that the fields hold are stored into or
retrieved from an mpp file residing in computer’s hard disk or any other storage device.

SAMPLE

Getting Started 13

What is a field reference in a formula ?

In the example above, you have just entered your first formula for a custom text field Text2,
which copies the content of the Text1 field to the Text2 field. In Project, we use field references
in the formulas when we need to pass the field values into the custom field formulas.

As required by Project’s custom field formula syntax, a field name enclosed in square brackets in a
formula, for example [Text1], is called a field reference; that is, the Text2 field’s formula
references the field Text1. Project evaluates the Text2 field’s formula for each task in the
schedule, as soon as we click OK in the Formula dialog box. This means that the formula gets the
data stored in the Text1 field and returns to the Text2 field for each task line in the project plan.
Project keeps recalculating the formula for all the tasks as we continue to create new tasks and/or
change the existing data in the Text1 field.

Project recognizes a field reference in a formula when a single-word field name is not enclosed in
brackets but it would be a good practice to use brackets for consistency and readability of the
formula.

You cannot enter any information to the Text2 field by typing in since the custom field now
contains a formula. This feature can be used to implement a simple protection for the data
entered. For example, in a task table, enter a reference to the Name field in a formula for a
custom text field, then rename the custom text field as “Task Name”; and insert its column before
or after the Name field. Finally, hide the Name column in the task table. The table will now
display the task names in the custom text field but the custom text field will be closed for entry by
typing in. This simple method prevents us from changing the content of the actual Name field
accidentally. Note that we cannot lock the fields in Project for the same purpose.

Properties of a Field

In Project, a field is characterized by some properties such as its name, category, type and entry
type. Each property is covered in detail in the following sections.

Note Product help documentation provides a list and detailed descriptions of all the
fields available in Project. Search the topic “available fields” on the website for the product
help. Field description pages include category, field type and entry type information.

Always review the list of available fields before attempting to create a custom field
formula in order to produce custom data since the information needed might already be
available in Project.

Field Names

A field’s name is an identifier which is composed of one or more descriptive words associated
with the project data that the field holds. Project allows us to rename the fields in the user
interface. Renaming fields is a very useful feature, especially while working with the custom fields,
as discussed earlier.

SAMPLE

14 Mastering Custom Field Formulas

Field Categories

In Project, the fields are organized based on the six categories of the project data available as
follows:

Task, Resource, Assignment,
Task-timephased, Resource-timephased, Assignment-timephased

A non-custom field may have one or more categories, depending on which categories of the
related project data exists. For instance, the duration data is available only for the tasks in a
project. Therefore, the Duration field has only task category and it is referred to as a task field.
The Cost field has all six categories since the related cost data are available in all categories. As
another example, there are only two categories of the Percent (%) Complete field, task and
task-timephased categories, since the percent complete data does not exist in other categories.

A custom field may have only task, resource and assignment categories. It is important to note
that, as it is clear from the option buttons available on the top of the Custom Fields dialog box,
we can enter formulas only for the task and resource categories of the custom fields.

In order to have access to a custom field of the assignment category, we need to insert the
custom field into a table in the Task or Resource Usage view; therefore, there are two
subcategories of the assignment custom fields: task assignment and resource assignment
categories. The custom fields in the assignment category are available to input data by either
direct user entry or roll-down method (this topic will be discussed later) in Usage views, but we
cannot define formulas for the custom fields of this category.

A custom field formula can only reference the fields (that is, the non-custom fields or the other
custom fields) of its own category since cross-category field access is not possible from within a
custom field formula. For instance, a task custom field formula cannot contain a field reference to
a resource field or a resource custom field, although a few task fields contain resource
information, such as Resource Names, Resource Group and Resource Initials.

Field Types

Project information is stored in the fields, in various forms of data such as date and time, number,
text, currency and so on. A field type (or field’s data type) identifies the type of the project data
that the field contains, as the name implies. The content of a field may be different but the field
type is identical across all categories of a field.

In order to create a formula that gives accurate results, we need to know both the type of the
fields (non-custom or custom) referenced in the formula and the type of the custom field for
which we create the formula. We will discuss why we need to know the field types while creating
formulas in detail, later.

The field types for the non-custom fields are listed in the table below, along with the description
of the field content and some examples of the fields for each type. As mentioned before, formulas
can only be created for the task and resource custom fields, therefore a formula can only
reference the task or resource fields. Consequently, we will focus on the non-custom fields of the
task and resource categories.

SAMPLE

Getting Started 15

Field Types for Non-Custom Fields

Field Type Field’s Content Examples

Currency Cost value Actual Cost, Fixed Cost
Currency Rate Rate of pay value Standard Rate, Overtime Rate
Date Date and time value Scheduled Start, Deadline

Scheduled Finish
Duration A value representing a duration (span) of

time
Work, Scheduled Duration,
Leveling Delay, Start Variance,
Free Slack, Total Slack

Enumerated An item selected from a drop-down list of
the predefined choices that the field
contains

Accrue At, Task Calendar,
Constraint Type, Status

Integer A whole number ID, Unique ID
Integer List A list of whole numbers separated by the

list separator character
Predecessors, Successors

Percentage A percentage value % Complete,
% Work Complete

Percentage/
Number

A percentage value or a decimal number
(depending on the setting)

Max Units, Peak

Text Text information Task Name, Duration, Start,
Finish, Group, Code,
Outline Number

Text List A list of text items separated by the list
separator character

Resource Names, Resource
Initials, Resource Group

RTF A text in Rich Text Format which allows
formatting such as bulleted lists, bold
typeface and so on

Notes

Yes/No Yes or No value Summary, Milestone

The fields display the project data in various formats as specified by the field type. For example,
the Cost field adds a currency symbol to the value displayed, or the Max Units field includes a
percentage symbol along with the value displayed, if the format is set to percentage. As another
example, a duration value is displayed with a time unit.

On the other hand, it is important to understand how the values are stored internally in a field,
rather than how they are displayed since we design our formulas based on what kind of
information a reference to that particular field evaluates to, in a formula. Despite the fields display
a project’s data in many different formats, the references to these fields in formulas evaluate to
either numeric or text (non-numeric data) as follows:

 References to the duration, integer, percentage and some enumerated type fields (for
example, the Status field, the Constraint Type field) evaluate to whole numbers in
formulas.

 References to text, text list, RTF, integer list and some enumerated type fields (for example,
the Task Calendar field) evaluate to text data in formulas.

 References to the currency, currency rate and percentage/number (for example, the
resource fields, Max Units and Peak) type fields evaluate to decimal numbers in formulas,
with a precision up to two decimal places.

SAMPLE

16 Mastering Custom Field Formulas

 The date field references evaluate to numeric values (decimal numbers with a precision up
to 10 decimal places) in formulas but they are recognized as date and time values
depending on the context in a formula.

 The Yes/No type fields (for example, the Summary and Milestone fields) are also referred
to as flag type fields. References to flag fields in formulas evaluate to -1 for a flag field
displaying Yes and 0 for a flag field displaying No, when converted to numeric values.

Note that some fields may store negative numeric values. In Project, there is a range of valid
values associated with each field type. Project does not allow us to enter data that falls outside
the range of valid values to any of the fields. Field type also gives us information on the valid
format of the entries to a field. For example, we cannot enter a duration value with a time unit
label which is not recognized by Project.

Note on the table above that, the Duration, Start and Finish fields are listed as text type fields
since they can accept text information. Therefore, we cannot create filters with criteria which
contain tests comparing the Duration field with the other duration type fields; and also the Start
or Finish fields with the other date type fields, so we must use “scheduled” versions of those
fields in the Field Name column of such filters. We may, of course, create a filter comparing the
Scheduled Duration field with the Duration field, but not the one comparing the Duration field
with the Scheduled Duration field.

In formulas, the Duration, Start and Finish fields will evaluate to the same values as the
“scheduled” versions for automatically scheduled tasks; and the same also applies to the manually
scheduled tasks only when they contain valid duration and date values. In this book, we will
always work with automatically scheduled tasks, unless otherwise stated; therefore, we will use the
Duration, Start and Finish fields. Also note that the field type specification for those fields are
the same as the “scheduled” versions in the product documentation, so do not get confused over
their field types. The entry type for the Scheduled Duration, Scheduled Start and Scheduled
Finish fields of a manually scheduled task is “calculated”, so they do not allow any input by typing
in. We will discuss entry types in the next section.

It is important to note that the operations that can be performed on a field reference in a formula
are determined based on the type of the value that the field reference evaluates to. For example,
arithmetic operations cannot be performed on the text data unless it contains numeric characters
that can be converted to numbers.

Note In this book, we will discuss only the types of the fields that can be referenced in
the custom field formulas; therefore, the field type Indicator is not listed above. Search
for the topic “field types” on the product help pages, in order to see a complete list of the
field types and the fields available for each type.

The custom field types available in Project are listed in the table below. Note that the Custom
Fields dialog box groups all of the task custom fields in sets of 10, 20 or 30 fields under a type
name; that is, each set is identified with a custom field type name (see the first column in the
table below). The same grouping method applies to the resource custom fields as well. Therefore,
in the Custom Fields dialog box, we have to select the associated custom field type in the Type
box in order to get access to a particular custom field for entering a formula.

SAMPLE

Getting Started 17

Field Types for Custom Fields
Type of the

Custom Field
(Type box)

Custom Fields available
(Field box)

Field Type Field’s Content

Cost Cost1 through Cost10 Currency Cost value
Date Date1 through Date10 Date Date and time value
Start Start1 through Start10 Date A start or other date

and time value
Finish Finish1 through Finish10 Date A finish or other date

and time value
Duration Duration1 through Duration10 Duration Duration or work value
Number Number1 through Number20 Number A numeric value
Text Text1 through Text30 Text Any text information
Flag Flag1 through Flag20 Yes/No Yes or No value
Outline Code Outline Code1 through Outline

Code10
Outline code A custom tag showing a

hierarchy similar to WBS
codes or outline
numbers

We have already discussed the field types in the previous paragraphs. Note on the field type
number in the table above; references to the number type fields (that is, the custom number
fields) in formulas evaluate to decimal numbers, with a precision up to two decimal places. The
ranges of valid values are also specified for the custom fields. Project does not allow us to enter
or return data that falls outside the range of valid values to the custom fields. We will discuss the
range and format of the valid values for each custom field type, later.

Note Always check the limits of the custom fields while working with large values.
Search the topic “Specifications” on the product support website for detailed information
regarding the limits of the custom fields. A custom field may display #ERROR at the
summary level, when the rolled-up sum of the subtask values exceeds the maximum value
allowed in the range of valid values. In this case, consider changing the related option
setting in the Custom Fields dialog box to None. If it suits your needs, you can also select
another roll-up method or you can modify the formula for the summary rows and then
select Use formula.

When we need to interpret a project’s data in an alternative way, a custom outline code field can
be used to create a custom hierarchical structure which can then be used to sort, filter or group
the project’s task or resource data in the way we want. Note that we cannot enter formulas to
custom outline code fields, so the information presented on the table above would be helpful
only when we reference a task or resource custom outline code field in a custom field formula.
The custom outline code field references evaluate to text data in formulas. All the controls except
for the Lookup… command will be grayed out in the other sections of the Custom Fields dialog
box as soon as you select the “Outline Code” in the Type box of the Field section of the Custom
Fields dialog box.

A field’s name usually gives you an idea of field’s data type (or its content). For example, it is
obvious that the Finish1 and the Start fields are both date type fields containing date and time
information. On the other hand, it is better to verify data types by reviewing the field descriptions

SAMPLE

18 Mastering Custom Field Formulas

in the help articles, for both the fields referenced in a formula and the custom field for which the
formula is created. For instance, the Start Variance field’s data type might be confused with date.
It is indeed a duration type field. As another example, the Status field and the Task Calendar
field are both enumerated type fields but the Status field evaluates to a numeric value while the
Task Calendar field gives text data in a formula.

What happens if a formula returns a value whose type does not match the custom field’s type ?
This is what we will intentionally do a lot in the examples. Most of the time, Project handles type
conversions implicitly. At other times, we get a #ERROR in the custom field. In this case,
performing an explicit type conversion on the return value may solve the problem. All these cases
will be discussed later, in related sections.

In Project, the last column of any table is the Add New Column column by default. Project detects
the data type of any information that you enter into any cell in this column by typing in and then
automatically replaces the column with the first available custom field of the proper type as soon
as you approve the entry. This helps you to see what the data type of the information entered is
and which custom field is available to use. If you have already used up all the custom fields of a
particular type and category, then Project will display the Delete Custom Fields dialog box. You
can select some fields listed to delete; or click Cancel to close the dialog box and then either use
a different type of field or reuse an existing field of the same type.

Entry Types

A field’s entry type in a task or resource category can be one of the following types as mentioned
in the field descriptions: entered, calculated, calculated or entered and null. Details for each
type are as follows:

 Only the user can enter a value to or modify the current value in an entered field.
Example: the task field Physical % Complete

 In a calculated field, only Project calculates the value, based on the values in the other
fields. Project recalculates the value automatically when the schedule changes.
Examples: the task field Early Start, the resource field Actual Cost

 The value of a calculated or entered field is calculated by Project based on the values in
the other fields. Any user entry overrides the calculated value.
Examples: the task fields Duration and Actual Cost

 A task or resource category of a field with entry type null, actually displays no information
but it makes the assignment category of the field available in a Usage view. There are just
a few fields with entry type null, so it is easy to remember those fields and avoid using
them in formulas. They do not cause #ERROR but the formula will not get any data from
these fields. And they are as follows: the resource category of the Baseline Start, Baseline
Finish, Actual Start, Actual Finish and Leveling Delay fields, the task and resource
categories of the Cost Rate Table field.

The entry type null just indicates that the field has no value (i.e., empty) in that particular
category. Therefore, for example, the numeric field Leveling Delay will always contain
zero (0), the non-numeric field Cost Rate Table will always contain a zero-length string
(“”) and the date type field Baseline Start will always contain NA, in the categories with
null entry type.

SAMPLE

Getting Started 19

This might create a confusion, but note that, some null fields (e.g., the resource fields
Baseline Start and Cost Rate Table) given above can still be found in the lists of the
Field button. Therefore, we should always review the field descriptions and verify the
entry types for the fields referenced in formulas.

As seen above, the field type is identical across all categories of a field but the entry type may
vary. For instance, the entry type for the resource category of the Baseline Start field is null,
therefore it always displays NA (NA means empty date field in Project) in the Resource Usage
view. It is just a placeholder in the field’s column and makes the assignment category of the field,
which has the entry type calculated or entered, available in the Resource Usage view.

As another example, the task field Resource Type is just a placeholder, providing no information
and the resource assignment category of this field displays information in the Task Usage view. In
Resource Usage view, the resource field Type displays the type of the resource; on the other
hand, its task assignment category automatically gets the rolled-down value from the resource
category but its entry type is null so the dropdown button is grayed out.

The task field Actual Cost is calculated by Project by default but we can change the related
settings in order to enter the values manually; see the help page describing the field for more
information.

The entry type for all the task and resource custom fields is calculated or entered but a custom
field containing a formula is closed for entering values by typing in; that is, the entry type
becomes calculated.

As an exception, the entry type of the custom outline code fields is always entered since we
cannot define formulas for them. A custom outline code field has no task assignment category;
that is, the associated cells are blank and grayed out in a Resource Usage view. On the other
hand, resource assignment category automatically gets the rolled-down lookup list from the task
category, even though the option buttons below the section Calculation for assignment rows is
inactive in the Custom Fields dialog box for the task custom outline code fields.

As explained above, the entry type of a field gives us information on how the field is populated.
For example, Project always populates the fields with the entry type calculated with an initial value
by default but it may not be a proper value to use in calculations. It is also possible that the field
may later become empty when the schedule changes. An entered field will be empty initially and
the initial value representing the “empty” depends on the field type and but it may not be used in
calculations.

When the fields referenced in the formula are empty (i.e. blank) or do not contain proper values,
the formula may not return accurate results or even worse, it may not generate an error message.
Therefore, a formula should verify the condition of the fields referenced before using their values
and should also warn us if the verification fails. In order to develop such a formula, we have to
know a field’s entry type and initial value.

SAMPLE

20 Mastering Custom Field Formulas

SAMPLE

Formulas in Project

In this section, we will start with a definition of a formula and then continue our discussion of the
topic with the elements of a formula.

What is a Formula ?

In Project, any expression, entered into the formula box for a custom field, which evaluates to a
valid value that can be displayed in the custom field is referred to as a formula. An expression
evaluates to a single value whose type also designates type of the expression. As we will discuss
later, both logical expressions (also referred to as Boolean expressions) and comparison
expressions evaluate to logical values corresponding to either true or false; a string expression
evaluates to a string value (that is, text information); a numeric expression evaluates to a numeric
value that can be used in arithmetic calculations and a date expression returns a date value.

An expression consists of one or more of the following elements: field references, references to
the built-in functions, literals and operators. For example, the simple formula created in the first
example, is composed of a single expression; that is, a field reference. Field references have
already been discussed in the previous section. We will now explore the other elements of an
expression and the expression syntax.

Expression syntax is a predefined set of rules that you must follow while creating expressions. If
you do not use the correct syntax, then Project cannot recognize the elements of a formula while
evaluating the formula. A syntax error is generated if Project does not recognize an element of
the formula; and Project does not proceed with the formula any further until you fix the problem.
Syntax errors in formulas are easy to handle since they are detected immediately while saving the
formula, that is, at the moment when Project evaluates the formula.

For example, consider a formula referencing a field which has a two word name such as Actual
Start. Expression syntax requires that you must enclose the field names in square brackets in the
field references. It will work with the fields having a single word name but you will get the
following syntax error if you fail to enclose the field name Actual Start with square brackets in a
formula:

The formula contains a syntax error or contains a reference to an unrecognized field or
function name.
To return to the Formula dialog box and highlight the error, click OK.

When you click OK, Project will return you to the formula box and highlight the word “Actual”
since it is not recognized as a field name. You will not be allowed to save the formula until you fix
the syntax errors generated. A syntax error will, of course, be generated when you enter a field
name that does not exist. Some other examples of formulas that would generate a syntax error:

 Enter this: Project highlights this:
 Finish Duration Duration
 Finish, Duration , (comma)

In the first formula, Project starts to evaluate the formula from left to right and recognizes the
Finish field, but its relation to the Duration field is not defined; and as such, Project cannot

SAMPLE

22 Mastering Custom Field Formulas

determine how to evaluate the expression, therefore, highlights “Duration” which is not expected
at this position. In the second one, the comma character is highlighted since it is not an operator,
which is expected to define the relation between the field references.

It is obvious that the proper way to reference both fields in a formula is to build an expression
performing some operations on the values that the fields evaluate to, in order to produce a result.
We will discuss syntax errors and other type of errors that the custom field formulas generate in
detail, later.

Literals

A literal refers to a value typed directly into an expression. Literal values of the different data
types are used in expressions such as numeric literals, string literals, date literals and Boolean
literals.

Numeric literals are the values of any numeric data type. For instance, the numbers 2 and 3.7 used
in the arithmetic expression 2 + 3.7, are both numeric literals. Project recognizes scientific
notation (i.e., a numeric value formatted as a combination of the numeric value, the letter "E" or
"e", the positive or negative sign for the exponent and the exponent itself). For example, enter
5.0e-1 into the formula box for a custom number field; it will be displayed as 0.5 in a custom
number field. When you open the Formula dialog box again, you will see that Project has already
replaced the entry with 0.5 in the formula.

A string literal is any sequence of contiguous characters enclosed in double quotation marks. All
the letters, numbers, spaces, or punctuation within the double quotation marks are interpreted as
characters; e.g., “123abc”. Note that a string literal is sometimes referred to as a string or a text
string. Text information entered into a formula must be enclosed in double quotation marks, so
that Project recognizes it as a literal value (i.e., a string literal). As an example; enter the string
literal “this is a “”string”” value” into a custom text field’s formula box. The field will display the
message this is a “string” value as shown below.

Task table
Text1 Number1

this is a “string” value 24

Formulas:
Text1 field : “this is a “”string”” value”
Number1 field : Len([Text1])

Note that two double-quotation marks within the string literal are interpreted as single double-
quotation mark. This is how we must use a double quotation mark within a string literal, otherwise
we will get a syntax error while saving the formula. The Len function accepts a string as the
parameter and returns its length; note that the Len function counts two double-quotation marks
within the string literal as one while calculating the length of the string literal.

A date and/or time literal is any sequence of characters, representing a date and/or time in a valid
format, enclosed in the number signs (#). Date and/or time literals can be entered in various
formats, such as the formats specified by the system’s locale setting, ISO 8601 format which is the
international standard and so on. As an example, the date and time literal #02-Jan-2014 13:00#
represents January 02, 2014 13:00:00. The missing time part will be 00:00:00 (midnight) by default

SAMPLE

Formulas in Project 23

in a date literal. The default is 00 for the seconds part, if not specified in a time literal, or in the
time part of a date and time literal. The 24-hour notation is the default time format when there is
no AM or PM designator in a time or a date and time literal.

Logical operations represented by the logical operators (see the next section) are performed
according to the Boolean algebra which was introduced in 1854 by George Boole; and the result
of these operations is either true or false, that is, a Boolean value. The words True and False are
the Boolean literals representing these two Boolean values (that is, true and false) in the custom
field formulas. The words Yes and No are also available to use in formulas and they are equivalent
to True and False, respectively. In formulas, all these words are used without double quotation
marks and case-insensitively.

The flag fields display Yes or No for logical results. Therefore, in formulas, we will use the literals
Yes and No instead of True and False for a consistent look. Note that both True and Yes
evaluate to -1, and both No and False evaluate to 0 (zero) when converted to numeric values in
formulas, just like the references to the flag fields. On the other hand, it is best to use logical
literals instead of their numeric equivalents in formulas in order to make formulas more readable.

Note The terms logical and Boolean are used interchangeably. In this book, we will use
the terms logical literals and logical values in place of Boolean literals and Boolean values,
respectively.

SAMPLE

24 Mastering Custom Field Formulas

Operators

As you may have already noticed while entering an expression to the formula box, the Formula
dialog box has buttons that can be used to insert the elements of an expression, such as the Field
button and the Function button. And also there are buttons for the operators, that are placed just
below the formula box, as shown below:

+ - * / & MOD \ ^ = <> < > AND OR NOT

An operator is a word, or a symbol composed of one or more characters, that denotes the
operations to be performed on the expressions (that is, the operands). Operators are categorized
based on the operations that they represent as follows: arithmetic, comparison, logical and
concatenation operators.

Arithmetic Operators

The table below lists the arithmetic operators. In the table, the operands expr, expr1 and expr2,
each represents a numeric value or a numeric expression (that is, a subexpression).

Arithmetic Operators
Symbol Name Syntax Operation represented

+ Addition expr1 + expr2 Sum the expressions

– Subtraction expr1 - expr2
Find the difference between the
expressions

 Negation -expr
Change the sign of expr from positive
to negative

* Multiplication expr1 * expr2 Multiply the expressions
/ Division expr1 / expr2 Divide expr1 by expr2

\ Integer division expr1 \ expr2

Round both expressions to integers
and then divide expr1 by expr2,
truncate the result to an integer and
return the integer quotient

Mod
Modulo or
modulo
division

expr1 mod expr2

Round both expressions to integers
and then divide expr1 by expr2,
return the remainder. The result will
have the same sign as expr1

^ Exponentiation expr1 ^ expr2
Raise the expression expr1 to the
power of the exponent expr2

We are all familiar with the arithmetic operators such as the addition, subtraction, multiplication
and division operator, and also the arithmetic operations denoted by those operators, but how
are they implemented in the custom field formulas ? This is what we will discuss now, starting with
the familiar one which is the addition operator.

The expression expr1 + expr2 shown in the Syntax column of the table represents the expression
syntax (that is, the format recognized by Project) for the addition operation. The plus sign (“+”) is
the addition operator, which is an arithmetic operator, that requires two operands (that is, expr1
and expr2).

SAMPLE

Formulas in Project 25

Operands to the addition operator can be literal values as in the arithmetic expression 6 + 9.2, or
numeric expressions, each of which evaluates to a numeric value. We will discuss various types of
expressions in detail, later.

The plus sign specifies that an addition operation is to be performed on both expressions;
namely, expr1 and expr2. Project, or the related component of the application, evaluates the
numeric expressions on both sides of the addition operator in a certain order, and then adds the
two resulting values together, and returns the sum as the numeric result of the addition operation
to the main expression (that is, to the point where the main expression contains the expression
expr1 + expr2 as a subexpression) or to the custom field containing only the expression expr1 +
expr2 as a formula.

Note that, in Project, a leading sign is not used while entering a formula. If you enter, for example,
the expression =6+9.2 into the formula box, then you will get a syntax error; Project will return
you to the Formula dialog box and highlight the equal sign (“=”) in the expression entered.
Project will not allow you to save the formula until you remove the preceding equal sign.

The basic concepts and the mechanism described above, regarding the implementation of the
addition operator in formulas, apply to the other operators as well. On the other hand, the details
of the operations represented vary depending on the operator.

If an operand to an arithmetic operator in an expression is a string containing numbers as
characters or a date value (or any expression evaluating to those values), then Project attempts to
convert it to a numeric value before performing the arithmetic operation. If the conversion fails,
then the formula containing the expression returns #ERROR. For example, the formula “123”*2
returns 246 to a custom number field. This implicit conversion feature enables us to perform
arithmetic operations on dates and times, as we will discuss later in the related section; for
example, the formula [Start]+1 adds 1 day to the start date. As we will discuss later, a number
can be added to or subtracted from a date; and a date can be subtracted from a date but adding
dates does not produce a meaningful result.

Some of the arithmetic operators are not used often in daily arithmetic, such as the integer
division operator (that is, the backward slash character, “\”), the modulo operator, the negation
operator and the exponentiation operator. The following table shows examples of the integer
division operation:

Number1 field’s formula Number1 field’s value
31.5 \ 4.7  6
31.5 \ 4.5  8

The steps in evaluation of the integer division expressions 31.50\4.7 and 31.50\4.5 are as
follows:

 (1) (2) (3)
31.5 \ 4.7  32 / 5  6.4  6
31.5 \ 4.5  32 / 4  8  8

In these operations, first the operands (i.e., the dividend and the divisor) are rounded off to the
nearest integers (1), then a regular division operation occurs (2), next the quotient is truncated to
an integer by removing the fractional part (no rounding off is done); thus, the formula returns the
integer quotient of the division to the Number1 field (3).

SAMPLE

26 Mastering Custom Field Formulas

The results shown reveal that rounding the operands to integers in an integer division operation
is based on the round half to even algorithm. The algorithm is applied only when the fractional
part is halfway between the two integers. Therefore, 4.5 is rounded down to 4 since 0.5 is the
halfway value between two integers, 4 and 5, and 4 being even. And 4.7 is rounded up to 5, since
it is the nearest integer. An integer division by 1 can also be used to verify the result of the
rounding operation as in 4.7\1 or 4.5\1. We will discuss the round-half-to-even algorithm in
detail, later.

The following table shows examples of the modulo division operation:

Number1 field’s formula Number1 field’s value
31.5 Mod 4.7  2
31.5 Mod 4.5  0

The steps for the arithmetic operation represented by the modulo operator are as follows:

 (1) (2) (3)
31.5 Mod 4.7  32 / 5  6.4  32 – 6 * 5 = 2
31.5 Mod 4.5  32 / 4  8  32 – 8 * 4 = 0

Project rounds the operands to integers by using the same algorithm as the integer division
operator (1), performs the division operation as usual (2); and then calculates the remainder (3).
Note that the calculation rounded dividend – (integer quotient) * rounded divisor yields the
remainder. A modulo division operation performed on the whole numbers used as operands
involves no rounding off. We will use the modulo operator in examples, as we progress through
the topics.

The table below includes examples with the exponentiation operator:

Number1 field’s formula Number1 field’s value
2^-1  0.5
2^2.2  4.59

The expression 2^-1 evaluates to 0.5. This is an example of the negation operation as well. Here, 2
raised to the power of negative 1 is equal to 1/2, that is, 0.5. The exponent can be a decimal
number as in 2^2.2 which yields 4.59.

SAMPLE

Formulas in Project 27

Comparison Operators

As mentioned in the previous paragraphs, we use arithmetic operators to perform arithmetic
operations on any two numeric expressions, in order to produce a numeric result that we need.
Similarly, we use comparison operators to compare expressions in order to determine the relation
between the two expressions (or operands). The following table lists the comparison operators:

Comparison Operators
Symbol Name Syntax Value returned

= equal to expr1 = expr2 True if expr1 is equal to expr2
<> not equal to expr1 <> expr2 True if expr1 is not equal to expr2
< less than expr1 < expr2 True if expr1 is less than expr2
> greater than expr1 > expr2 True if expr1 is greater than expr2

<=
less than or
equal to

expr1 <= expr2
True if expr1 is less than or equal to
expr2

>=
greater than or
equal to

expr1 >= expr2
True if expr1 is greater than or
equal to expr2

A comparison expression created by using a comparison operator (see the Syntax column in the
table above) always evaluates to one of the two logical values, true and false. For example, the
comparison expression expr1 <> expr2, testing for inequality returns true if expr1 is not equal to
expr2, as shown in the last column of the table, and returns false if they are equal.

In the example below, the Flag2 field will display Yes only if there is an exact match between the
text entered to the Text1 field and the string literal "Hello, World !!". This is a typical string
comparison:

Task table
Text1 Flag2

Hello, World ! No
Hello, World !! Yes

Text1 field : <enter text by typing in>
Formula:
Flag2 field : [Text1] = “Hello, World !!”

And more examples:

Condition tested Flag1 field’s formula Flag1 field’s value
Is “test” equal to “test” ?  “test” = “test”  Yes
Is 99 greater than or equal to 2 ?  99 >= 2  Yes
Is -1 greater than 0 ?  -1 > 0  No

As it is seen in the examples above, the operands, expr1 and expr2, can be literal values (i.e.,
numbers, strings or dates and/or times), numeric expressions, string expressions or date
expressions. The question is now: how does Project evaluate the comparison expression, if the
types of the operands do not match ?

We will discuss comparing different types of fields and using the type conversion functions to
convert types explicitly, later. Here, let us first explore how the comparisons with different types of

SAMPLE

28 Mastering Custom Field Formulas

literals work. There is of course no practical use of comparisons, where both operands are literals,
but here, we will compare literals of different types in order to understand how the comparisons
work. Common scenarios are as follows:

 Comparing a string literal with a numeric literal in a formula, as in “9” = 9, produces
#ERROR even when the string literal contains only numbers as characters.

 A date literal can be compared with a numeric literal. In this case, a numeric
comparison is performed. For example, both comparisons below return true since the
numeric literals correspond to the serial numbers for the date literals (system’s short
date format is M/d/yyyy):

#11/11/2014#=41954 and #12/11/2014#=41954+1

 While comparing a date literal to a string literal, a string comparison is performed.
This means that if the string operand does not contain the exact representation of the
date operand’s date and time value according to the system’s locale (that is, the short
date and long time format specified in the system), the comparison returns false.

For example, the comparison #11/11/14#="11/11/14" returns false. Project changes
the date literal #11/11/14# to #11/11/2014# (that is, the current system’s short date
display format: M/d/yyyy) in the formula. Using this hint, we can modify the
comparison as #11/11/14#="11/11/2014" and then the result becomes true. As a
result, a string representing a date can be used as a date string if it contains a date in
the system’s short date format. As we will discuss later, many functions accepting
dates as parameters recognize date strings in various formats as long as the order of
the elements is correct according to the system’s locale.

Logical Operators

Most of the time, we create formulas to find out whether the values in a field meet multiple
conditions; for example, searching for the dates in a date type field that fall into a particular range
of project dates. In this case, we use logical operators (or Boolean operators) to combine
comparison expressions in order to create multiple conditions. The resulting expression
representing multiple conditions is referred to as a logical expression.

Logical operators operate on logical values as operands. Therefore, the operands expr, expr1,
expr2 can be any expression that evaluates to a logical value, such as comparison expressions.

The Formula dialog box contains buttons for the logical AND, OR, and NOT operators. The table
below lists the logical operators.

Logical Operators
Symbol Name Syntax Value returned

And
Logical
conjunction

expr1 and expr2
True when both expr1 and expr2 are
true

Or
Logical
disjunction

expr1 or expr2
True when either expr1 or expr2 is
true

Not
Logical
negation

not expr
True when expr is not true
(that is, reversing the result of expr)

SAMPLE

Formulas in Project 29

The references to the flag type fields (i.e., Yes/No fields) such as Summary, Milestone and Flag1
evaluate to the logical values in formulas. Therefore, comparing a flag field’s value with a logical
literal for equality or inequality is redundant, as in [Summary] = Yes and [Summary] <> Yes;
instead, the field reference [Summary] and the logical expression Not [Summary] can be used,
respectively.

We will continue to discuss comparisons and logical operations in other sections as well, since
they are used a lot in the custom field formulas.

Concatenation Operators

The concatenation operators & and + (that is, the ampersand sign and the plus sign) are used to
combine string expressions. See the examples below:

Text1 field’s formula Text1 field’s value
“Hello, ” & “World !”  Hello, World !

123 & “.” & 33  123.33
123 & "4" & 33  123433
123 & 4 & 33  123433

The concatenation operator & (the ampersand sign) combines two strings to form one string; and
note that any numeric operand is converted to a string in the operation. Thus, a numeric value (or
any expression returning a numeric value) can be concatenated with an empty string (“”) in order
to convert it to a string as in 123 & “”.

The concatenation operator + (the plus sign) also combines the string operands successfully. But
note that if any of the operands is a numeric expression, then the other operand is automatically
converted to a number and an arithmetic addition operation is performed. Therefore, the other
operand must be a string literal containing only numbers as characters, such as “123”, otherwise
the result will be an error instead of the arithmetic sum of the two operands. For example, the
expression 123+".567" returns 123.57 to a custom number field (that is, the arithmetic sum of 123
and 0.567 rounded to the field’s allowed precision) while the expression 123+",567" generates
#ERROR, since the string operand ",567" cannot be converted to a number during evaluation.
Here, the comma is not recognized as part of a numeric value, based on the decimal symbol
setting of the computer system used.

Note that Project does not have a delimiter symbol setting, so it is obtained from the operating
system. Therefore, the delimiter character that appears between any two predecessor ids (that is,
the task identification numbers) on the Predecessors field in a task table reveals your system’s
delimiter symbol setting. In a system where the decimal separator symbol is comma (,) and the
delimiter symbol is the semicolon ";", for example, both 3,9 & "" and 3.9 & "" return 3,9; Project
replaces period in the decimal literal 3.9 with comma, in the formula. On the other hand, in a
system where the decimal separator symbol is period (.) and the delimiter symbol is the semi
colon ";", the concatenation operation 3,9 & "" will cause syntax error, as it is seen above; in this
case, we must use the string literal “3,9” if we need to use the value in a string expression, such
as “the value is “ & “3,9”.

SAMPLE

30 Mastering Custom Field Formulas

Operator Precedence

In previous paragraphs, we have used examples of single operator expressions while discussing
various categories of operators, but formulas usually contain multiple expressions combined with
operators. How does Project determine the order of evaluation in complex expressions ? It is
determined according to the precedence and associativity of the operators, as follows:

 Expressions with operators of higher precedence are evaluated first.
 If the operators have the equal precedence, then the order of evaluation is

determined by the associativity of the operators.

The table below lists operators in descending order of precedence; that is, the arithmetic
exponentiation operator (^) has the highest precedence and the logical disjunction operator (Or)
has the lowest precedence.

Precedence and Associativity
Precedence (descending) Associativity

Arithmetic Operators
^ -
– (negation) -
*, / left to right
\ -
Mod -
+, – left to right
Concatenation Operator
& -
Comparison Operators
All comparison operators left to right
Logical Operators
Not -
And -
Or -

Note that some rows in the table contain more than one operator. These are the operators of
equal precedence; namely, multiplication and division, addition and subtraction, and all
comparison operators. For example, if an expression contains more than one comparison
operator, then Project evaluates the expression from left to right as determined by the
associativity of the comparison operators.

Here are some examples with numeric literals that show how order of evaluation is determined
based on the precedence and associativity of the operators:

1 + 4 * 3 - 2 / 2  1 + 12 – 2 / 2  13 – 2 / 2  13 - 1  12

1 * 2 / 1 * 3  2 / 1 * 3  2 * 3  6

Note that the multiplication and division operators have the same precedence but it is higher
than that of the addition and subtraction operators.

SAMPLE

Formulas in Project 31

The Formula dialog box has buttons for parentheses. The parentheses override the default order
of evaluation, therefore they can be used to control the order of evaluation in expressions.

+ - * / & MOD \ ^ () = <> < > AND OR NOT

An expression enclosed in parentheses is given the highest precedence. The precedence and
associativity rules also apply to the expressions enclosed in parentheses.

1 + 4 * (3 - 2 / 2)  1 + 4 * (3 – 1)  1 + 4 * 2  1 + 8  9

1 * (2 / 1) * 3  1 * 2 * 3  2 * 3  6

Note that in the second example, there is no effect of using parentheses since multiplication and
division have equal precedence.

As another example; the expression "1"+"1"+1 is evaluated from left to right, so the
concatenation "1"+"1" yields “11”, then the final expression “11” + 1 is an arithmetic addition
operation yielding the numeric value 12. Here, using parentheses changes the order of evaluation;
for example, in the expression "1"+("1"+1), the subexpression (“1”+1) evaluates to 2 since the
string literal “1” is converted to the numeric value 1, and then the final expression “1” + 2 is an
arithmetic addition expression where the numeric value 2 and the string literal “1” (which is
automatically converted to number) are added together, thus giving the result 3. In order to make
things clear, use the ampersand (&) to perform a string concatenation instead of the plus (+).

We sometimes use parentheses to emphasize the order of evaluation. Consider the arithmetic
expression, 2^-1. In this expression, the precedence rules are in place to provide the proper order
of evaluation, so we do not need parentheses, but we may want to use them in order to improve
readability, as in 2^(-1).

Expressions can be nested by using parentheses. In case there are multiple levels of nesting, the
evaluation starts with the innermost expression and then continues outward. There is a certain
limit in how deep we can nest the expressions by using the parentheses, and exceeding this limit
in the nesting level will result in a syntax error. In Project, this limit is probably high enough not to
pose a problem in formulas. Nesting deeper than a few level makes a formula difficult to read,
especially when the expressions wrap in the Formula dialog box. Project will warn us with a
syntax error if there are mismatched parentheses in a formula.

SAMPLE

Settings for the Custom Fields

The Custom Fields dialog box contains all the settings and commands related to the custom
fields. We will now explore these settings and commands grouped under 5 different sections of
the dialog box.

We have already discussed some parts of the Field section such as the Task and Resource
options, the Type selection box, the Field box and the Rename command. The Add Field to
Enterprise... command is not active in the desktop version of Project, just like the Project option
at the top of the section. Also the Formula dialog box in the Custom attributes section has
already been covered in the previous parts of the book.

Note Use caution while working on the Custom Fields dialog box since changing some
settings or applying some commands might result in loss of the existing custom field
data.

How to Delete or Disable a Formula, How to
Clear or Protect a Custom Field’s Data

Selecting a field in the Field box and clicking the Delete button will delete the field’s custom
name and its lookup table, formula or graphical indicators defined; all the sections will be
returned to the defaults. Note that there will be no Undo for this operation. The same operation
can also be performed on the Fields tab of the Organizer dialog box (the custom field will not
appear in the pane of its project plan file if it does not have a lookup table or formula, and/or
graphical indicators defined). But this operation does not delete the data that the field currently
holds.

The data in a custom field that has no formula can be deleted in a table, as follows: select and
right-click the cells containing the data and then select Clear Contents command in the shortcut
menu opened. Another method is to enter Null as the formula (that will generate #ERROR), and
select None (that will clear #ERROR) in the Custom attributes section and then click Delete to
remove Null in the Edit formula box.

Note that selecting the Data Type command on the shortcut menu opened by right-clicking the
column header of a custom field shows a list of custom field types which is identical to the list of
the Type button in the Custom Fields dialog box, except for the Outline Code type. The list
shows the type of the current custom field highlighted and check-marked. Now selecting a
different custom field type from the list, hides the column of the current custom field, deletes all
its data if it does not have a formula and inserts a new custom field of the selected type to the
table. The Undo command will undo the data type change command.

The None option is the default selection in the Custom attributes section, meaning the custom
field is available for data entry by typing in. The Lookup… button in the same row is used to
define a lookup table for a custom field. In this book, we will not discuss how to create lookup
tables for the custom fields, but we may use custom fields with lookup tables in the examples.

SAMPLE

58 Mastering Custom Field Formulas

In order to disable a formula temporarily, just select None option in the Custom attributes
section; the custom field will now allow data entry. Then all the existing data in the field will be
overwritten by the output from the formula, if you select the Formula… option back. Project will
warn you before doing this.

If you want to protect the data entered to a custom field from being overwritten accidentally by
typing in, then select the Formula… option and click OK in the dialog box that Project displays
for warning, but do not click the Formula… button. Project will not allow any data entry as if the
custom field has a formula.

How to Import a Custom Field

Copy-pasting the field data does not bring in the custom field’s attributes and/or graphical
indicators. The Import Custom Field dialog box is used for this purpose.

The Import Field… button in the Field section opens the Import Custom Field dialog box. This
dialog box imports lookup table or formula, and/or graphical indicators of the custom field
(selected in the Field box) of any project plan or template (selected in the Project box) to the
custom field highlighted in the Field box of the Custom Fields dialog box. Note that the Field
type option buttons allows us to select either Task or Resource field, independent of the Task or
Resource category selected on the top part of the Field section in the Custom Fields dialog box.

We cannot select a project plan that is not currently open since it will not appear in the drop-
down list of the Project box. Note that the import operation may be performed between the
custom fields of the same project plan file; for example, the lookup table or formula and/or
graphical indicators of the Text1 field can be imported to the Text2 field in the same project
plan. If you copy the custom field that has a lookup table or formula, and/or graphical indicators
to the Global.mpt, then the corresponding custom field of all new project plan files that does not
have any of these elements defined will automatically get the attributes and/or graphical
indicators defined, even without you noticing.

The Import Formula dialog box opened from the Formula dialog box can be used to import
only the formulas; and the Import Indicator Criteria dialog box opened from the Graphical
Indicators dialog box can be used to import only the indicator criteria. Both import operations
can be performed between the custom fields of the current project plan file, or between the
custom fields of the current project plan file and another file (or template) currently open.

Custom Fields in Summary Rows

We will now explore how the custom fields are populated in the task and the group summary
rows (that is, the group headers), but let us first see how it works with the regular fields (i.e., non-
custom fields).

At the task summary level, some regular fields contain the calculated data (e.g., the Duration
field) while the others contain the data rolled-up from the non-summary task rows based on a
predefined method (e.g., the Start and Cost fields), or the data entered by the user only (e.g., the
Fixed Cost field). Although some regular fields such as Duration and Start, also accept user input
at the summary level, others may be closed for entering data such as the Cost field.

SAMPLE

Custom Fields Dialog Box 59

Project calculates the data shown in the group headers for the regular fields at the time of
grouping the data and we cannot customize how Project calculates that data. The data shown for
the regular fields in the group header disappear as soon as the grouping is turned off. The group
headers are not the user input areas that we can enter data to the regular fields. Other than that,
Project may not calculate the values for the regular fields at the group summary level in the same
way as it calculates them at the task summary level. For example, the Fixed Cost field shows the
rolled-up sum of the group row values in the group header. And as we would expect, some
regular fields show no data at the group summary level, such as the ID field (unlike the summary
tasks, the group headers have no ID number) and the Standard Rate field. Let us now see how
Project handles custom fields in summary rows.

The custom fields can be filled in with data by three methods at the task summary level (including
the project summary level); user input, rolling up the non-summary task values (that is, values of
subtasks including normal tasks, milestones and recurring tasks) and using a formula. The
following table lists the related settings in the Custom Fields dialog box for the task summary
rows.

 Options available to select in
Calculation for task and group summary rows

Option selected in
Custom attributes

None (default) Rollup Use formula

None (default)
User enters non-
summary values

N/A

Formula
Formula calculates non-
summary values

User enters summary
values

Non-summary
values are rolled
up Formula calculates

summary values

Lookup
User selects non-
summary values from a
lookup table

User selects summary
values from a lookup
table

N/A N/A

Note that the option selected in the Custom attributes section specifies how the custom field
gets its data at the non-summary level and also determines what options will be available in the
next section Calculation for task and group summary rows. For example, as shown in the table,
if there is a lookup table defined, then both the Rollup and the Use formula options will be
grayed out. And also, the Use formula option will be grayed out, if there is no formula defined
(that is, None selected in the Custom attributes section). Project locks the custom field at the
summary level when the Rollup or the Use formula options is selected.

The task (that is, non-summary and summary task data if the group definition includes) or
resource data in a table can be grouped based on a regular or custom field, or any combination
of those fields in a grouping hierarchy (the Group Definition dialog box allows us to enter up to
10 rows of field names). The table below summarizes how the custom fields are populated in the
group summary rows.

SAMPLE

60 Mastering Custom Field Formulas

 Options available to select in

Calculation for task and group summary rows

Option selected in
Custom attributes

None (default) Rollup Use formula

None (default) N/A

Formula

Custom field’s values in
group rows are rolled up
to group summary rows

Formula calculates
custom field’s
values at group
summary rows

Lookup

Custom field is
blank at group
summary rows.
Custom flag field
shows No by
default.

N/A N/A

Like the regular fields, Project calculates the data shown in the group headers for the custom
fields at the time of grouping the data and we can specify how Project calculates that data. The
data shown for the custom fields in the group header disappear as soon as the grouping is turned
off. The group headers are not the user input areas that we can enter data to the custom fields.

Group rows under the group headers contain grouped task or resource custom field data which is
entered by the user, or calculated by a formula, or selected by the user from a lookup table
defined, as it is specified by any of the options None, Formula and Lookup selected in Custom
attributes section of the Custom Fields dialog box (see the first column of the table above). If a
custom field’s value in any group row is changed by entering a new value or selecting another
item from the lookup or modifying the formula entered, then Project updates the rolled-up group
summary row value of the custom field, but it does not rebuild the grouping based on the new
data. It is required to turn off and on the grouping in order to refresh the grouping.

As mentioned above, we can specify how Project calculates a custom field’s data in the group
headers. In the grouping displayed, we can keep a custom field blank in the group summary rows
or we can select a rollup method that specifies how the grouped values of the customs field to be
rolled up to the group summary rows. These two actions correspond to the None and the Rollup
options, respectively, in the section Calculation for task and group summary rows (see the
second and the third columns of the table above).

Suppose that a custom field has a formula, and we want to use the same formula to calculate the
custom field’s value in the group headers, instead of rolling up the values of the custom field in
the group rows to the group headers. Then we can select the option Use formula for this custom
field in the section Calculation for task and group summary rows. In this case, the custom field
formula can access the data calculated for the regular fields and the other custom fields in the
group summary rows.

SAMPLE

Custom Fields Dialog Box 61

Consider the simple task table below where the Number1 field displays 30 at the summary level
which is the rolled-up sum of the values 10 and 20 entered for the tasks, and the Text1 field
contains the formula (select Use formula);

Switch([Group By Summary],"Group Header",[Summary],"Summary",True,"")

In the formula, the flag field Group By Summary returns true to the formula (and displays Yes
when inserted to the table) in the group summary rows. The Summary field cannot distinguish
the group summary row from the task summary row, and it returns true for both, therefore, it is
placed as the second pair of the expressions in the Switch function.

Let us now group the task data based on the blank field Text9 and also turn on the checkbox
Show summary tasks while defining the group. The picture below shows the task table with
grouping.

As we would expect, the Number1 field’s value in the group summary row is the rolled-up sum of
the values of the subtasks T1 and T2 (that is, 20 + 10 = 30) even though the group rows include
the summary task S1. This simple example demonstrates how grouping handles rolling-up the
values in the group rows to the group headers.

It is important to note that Project does not include the data of the rows filtered out while
calculating the values at the group headers, as we would expect. For example, try this; collapse
the group to the header row, Number1 shows 30 and then apply AutoFilter to the Name column
to filter out T2; Number1 will now display 20 as it is seen below:

Note that grouping also works in some other views with no table such as the Network Diagram
view and the Team Planner view. The tables given above, which list the options available for the
task and the group summary rows also apply to the groups created in those views.

The AutoFilter menu opened by right-clicking any field’s column header in a table, provides
Group on this field or Group by commands. Other than that, the Group Definition dialog box
provides several other options while defining a group.

SAMPLE

62 Mastering Custom Field Formulas

Rollup Methods

We will now discuss how Project rolls up the custom field data to the task and group summary
rows, in detail. No rollup method is available for the custom text fields. The rollup methods
available for the other custom fields are as follows:

 There are two rollup methods for the custom flag fields: And and Or:

If the And method is selected, then we will not get a Yes at the summary level unless all
the subtask level data are set to Yes in the custom flag field (that is, the result will be the
same as if the And operator has been applied to all subtask data in a formula).

If the Or method is selected, then it is sufficient to have just one Yes among the rolled-up
data (that is, at the subtask level) in order to have Yes at the summary level (i.e., the result
will be the same as if the Or operator has been applied to all subtask data in a formula).

 There are two rollup methods for the custom date fields: Maximum and Minimum. The
Maximum method is used to roll-up the latest date among the subtask dates to the
summary level. And the Minimum method is used to roll-up the earliest date among the
subtask dates to the summary level.

These two methods are also available to select for the other custom fields holding
numeric data, that is, the custom cost, number and duration fields.

 The rollup methods Average, Average First Sublevel and Sum can be applied to the
custom cost, number and duration fields. The example below shows how these methods
work with the summary tasks. Note that the behavior is the same with the grouped tasks
too.

SAMPLE

Custom Fields Dialog Box 63

How are they calculated:

 Number1: S3: 3 / 2  1.5 (average of T6 and T7)
 S2: (8 + 1.5) / 3  3.17 (average of T4, T5 and S3)
 Here, S3 is on the first level of the subtasks.

 S1: 3.17 / 4  0.79 (average of T1, T2, T3 and S2)
 Here, S2 is on the first level of the subtasks.

 Number2: S3: 3 / 2  1.5 (average of T6 and T7)
 S2: (8 + 3) / 4  2.75 (average of T4, T5, T6 and T7)
 S1: (8 + 3) / 7  1.57 (average of T1, T2, T3, T4, T5, T6
 and T7)
 The summary level result is the average of all subtasks.

 Number2: S3: 3  3 (sum of T6 and T7)
 S2: 8 + 3  11 (sum of T4, T5, T6 and T7)
 S1: 8 + 3  11 (sum of T1, T2, T3, T4, T5, T6 and T7)
 The summary level result is the sum of all subtasks.

 The rollup methods Count All, Count First Sublevel and Count Non-Summaries can be

applied to the custom number fields. The example below shows how these methods work
with the summary tasks. Note that the behavior is the same with the grouped tasks too.

Note that the method with First Sublevel is used to count all the sub-items on the first
sublevel including the non-summary and summary tasks.

SAMPLE

64 Mastering Custom Field Formulas

The table below lists the custom field types and the corresponding rollup methods available:

 Custom Field Type
Rollup Method Number Cost Duration Date Flag
Average   
Average First
Sublevel   

Sum   
Maximum    
Minimum    
Count All 

Count First Sublevel 

Count Non-
Summaries 

And 

Or 

When you click the Rollup option button, the rollup box initially shows Or for the custom flag
fields and Maximum for the other numeric custom fields. Note that there is no rollup options
available for the custom text and outline code fields.

Graphical Indicators

In the Custom Fields dialog box, all the sections initially have the None option selected by
default, except for the Values to display section which has the Data option selected by default. If
you select the option Graphical Indicators… and click its button, Project opens the Graphical
Indicators dialog box for the custom field highlighted in the Field box. If you want to display
graphical symbols instead of the literal data in a custom field (except for the Outline Code field),
then follow the steps below in order to specify indicator criteria:

 The dialog box opens with Nonsummary rows selected by default in the Indicator criteria
for section, so you can now specify the indicator criteria for subtasks and group rows in
the the Indicator criteria table. Otherwise, leave the table blank and proceed with
selecting the next item, which is either Summary rows or Project summary.

 Select Summary rows and then enter the criteria for task summary and group summary
rows to the table.
If you do not need a different set of criteria for the summary level, then you can turn on
the checkbox just below Summary rows. Project copies the criteria from Nonsummary
rows as soon as you click Yes in the warning dialog box displayed. The table shows the
criteria inherited in gray.

 Select Project summary and then enter the indicator criteria to the table for the project
summary task. You can turn on the checkbox below Project summary in order to use the
same criteria as specified for Summary rows.

In the Indicator criteria table, criterion defined in each row represents the condition to be tested
on the custom field’s data and the image to be displayed when the condition is met. The first
column specifies the test, that is, how the custom field’s data is to be compared against the

SAMPLE

Custom Fields Dialog Box 65

value(s) entered to or the field reference selected in the Value(s) column. If the criterion entered is
not valid, then Project alerts us and does not allow us to close the dialog box; for example, text
information cannot be entered to the Value(s) column if the indicators are defined for a custom
number field.

Project evaluates the formula and then starts evaluating the conditions in the Indicator criteria
table, starting from the top row. If a test fails, then Project proceeds with the next row below, and
keeps evaluating the condition on every row until it finds the condition that is satisfied. When it
finds the true condition, then the corresponding indicator image is displayed in the custom field.
But if all the tests fail, then the custom field shows blank (which is the default image being the
first item in the image drop-down list) instead of the data. It is possible to handle the “no match”
situation by using the test “is any value” as the last criterion line.

Test expressions are the same as the ones available to use in the Filter Definition dialog box,
except for the last item, “is any value”. We will discuss the tests in detail later. Here, we will focus
on how to establish the logic while defining indicator criteria.

Consider a scenario where we have some numbers in the fields Number1 and Number2 and we
want to monitor how the Number2 field’s data changes relative to the data stored in the
Number1 field. Suppose that the indicator criteria are given as follows:

 Based on the difference Number2 - Number1;

Use green indicator, if the difference is less than or equal to 7 percent of Number1
Use yellow indicator, if it is greater than 7 percent of Number1 and
 if it is less than or equal to 15 percent of Number1
Use red indicator, if it is greater than 15 percent of Number1

 Number2 is always greater or equal to Number1, so there is no need to verify that the
difference is positive.

We can create an iif formula to represent the logic given above, as shown below:

iif ((([N2] - [N1]) <= ([N1] * 0.07)) ; “Green” ;
iif ((([N1] * 0.07) < ([N2] - [N1])) And

(([N2] – [N1]) <= ([N1] * 0.15)); “Yellow”; “Red”))

The field names have been renamed from Number1 and Number2 to N1 and N2, respectively.
The construct above is an example of inefficient formula which includes an explicit definition of
each range specified, with a lot of parentheses. The following simple and easy to understand
custom text field formulas will do the same work;

using the iif function:
iif([N2 <= [N1] * 1.07, “Green”, iif([N2] <= [N1] * 1.15, "Yellow", "Red"))

or using the Switch function:
Switch([N2] <= [N1] * 1.07, “Green”, [N2] <= [N1] * 1.15, "Yellow", True, “Red”)

Note that the order of the conditions testing to see what range the difference value falls into is
important. In the second condition (or the second pair in the Switch function) we do not need to
check for the lower limit of the range since it has already been covered by the first condition (or
the first pair in the Switch function).

SAMPLE

66 Mastering Custom Field Formulas

We can now enter the formula to the Text1 field and specify the indicator criteria by entering to
the table as shown below:

A more simple solution to the case would be as such:

 Enter the formula (Number2 - Number1) / Number1 to the Number3 field. This formula
calculates the percentage of the difference.

 Specify the indicator criteria in the table as shown below:

SAMPLE

Custom Fields Dialog Box 67

In this method, changing the ranges when needed would be obviously a lot easier than editing
the formula. See a sample task table below:

Project inserts <All> to the Value(s) column automatically as soon as we select “is any value” in
the Test for ‘Number3’ column. This criterion row is used only when all the tests above fails. If not
used, then Project uses the blank indicator image by default, for the items that has no indicator
specification. For example, while defining indicators for the flag fields, we can enter a single row
of criterion. Then Project uses the blank indicator image for the other item(s) by default, as shown
below:

SAMPLE

68 Mastering Custom Field Formulas

Note that the checkbox Show data values in ToolTips is turned on in the Graphical Indicators
dialog box, therefore we can see the content of a cell by keeping the mouse pointer over it.

As a final note on the graphical indicators; if a test (or criterion) that we are trying to enter to a
row in the Indicator criteria table is not suitable for the custom field, then Project does not allow
us to complete the entry and displays a dialog box with the following message:

This type of test does not apply to the field you selected.
 Click a different test or a different field in the Field Name column.

Clicking OK in the dialog box returns us to the same row, then we can enter a proper test and
complete the operation.

SAMPLE

Special Operators: Like and
Between…And

A criterion defined in a task or resource filter (or custom AutoFilter) or for a graphical indicator
can be converted to a condition to be tested in a formula, by using a logical operator
corresponding to the test expression selected. Test expression is the item selected from the
drop-down list of the Test column in the Filter Definition dialog box, or in the Custom
AutoFilter dialog box or in the Indicator criteria table of the Graphical Indicators dialog box.
The following table lists test expressions and the corresponding comparison operators:

Test expression Logical operator
equals =
does not equal <>
is greater than >
is greater than or equal to >=
is less than <
is less than or equal to =<

The table above does not include the tests for “within” and “contain”. The “within” tests can be
converted into multiple conditions composed of comparison expressions combined by logical
operators. For example, consider the filtering criterion Number1 is within 1,9. Any value in the
Number1 field that falls within the range specified by 1 and 9 (inclusive) satisfies that criterion.
The filtering criterion should be changed to Number1 is not within 1,9 (inclusive) in order to
find the values that falls outside the same range. So how can we create conditions representing
these two criteria ? The answer is shown below:

Filter applied to the Number1 field: Formula used in the Text1 field:

Number1 is within 1,9  iif (1 <= [Number1] And [Number1] <= 9;
[Number1]; “”)

Number1 is not within 1,9  iif (Not (1 <= [Number1] And [Number1] <= 9);
[Number1]; “”)

Using a custom text field avoids display of zeros in the Text1 column for the values that do not
satisfy the filtering criterion. There is a more practical way to perform the tests above in the
formulas; using a special operator that does not have a button in the Formula dialog box: the
Between...And operator. So we can construct the formulas as follows:

iif ([Number1] Between 1 And 9; [Number1]; “”)
and

iif ([Number1] Not Between 1 And 9; [Number1]; “”)

SAMPLE

70 Mastering Custom Field Formulas

Suppose that we need to see the tasks whose predecessor is the task with identification number
5. We can quickly list those tasks by using AutoFilter, but here we will create custom filters (or
custom AutoFilters) in order to demonstrate how “contain” tests work as shown below:

Task table: Filtering criterion used and the task lines displayed:

Predecessors
contains 5

Predecessors
does not contain 5

Predecessors
contains exactly 5

 5,4
1,55
3,7,53
6,5,9
20,4,5

No result 5,4
6,5,9
20,4,5

As it is seen in the table above, the tests “contains” and “does not contain” list the predecessor
lists containing any number of 5s and the predecessor lists that does not contain any 5s,
respectively. The test “contains exactly” recognizes the delimiter and finds only 5s standing alone.
The “contain” tests of the filters used for string search in the fields like the one shown above can
be performed by using the Instr or the StrComp functions in formulas.

These formulas will be relatively complex formulas, especially when we need to find the multiple
occurrences of a string in the field. Instead, we can use some other special operator, which do not
have a button in the Formula box; the Like operator.

The Like operator requires two operands; the left operand is any string expression (here, the field
Predecessors) and the right operand is the pattern string. The Like operator returns true if each
character of the string expression matches the character at the corresponding position in the
pattern string; for example, the condition [Text1] Like “abc” returns true if the Text1 field
contains the string abc exactly.

The pattern string may contain any combination of the following elements:

 A specific character.
 A character list: for example, [abc] represents any of the characters a, b or c, [129]

represents any of the numeric characters 1, 2 or 9.
 A character or digit range: for example, [a-z] represents any character from a to z,

inclusive; [0-9] represents any digit from 0 to 9, inclusive.
[!a-z] represents outside a range of characters, [!0-9] represents no digit.

 A wildcard character: * represents any number of characters, ? represents a single
character, # represents a single digit. A wildcard character is enclosed in square brackets
in order to use as literal character, such as [*], [?] and [#].

SAMPLE

Special Operators: Like and Between…And 71

As a result, the Like operator helps us to find the text information in the fields that satisfies any
pattern that we define. Let us now create custom flag field formulas doing the same string
searches by using the Like operator:

Filter applied to the Predecessors field: Formula used in the Flag1 field:
Predecessors contains 5  [Predecessors] Like “*5*”
Predecessors does not contain 5  [Predecessors] Not Like “*5*”

Predecessors contains exactly 5 
[Predecessors] Like "5,*" OR
[Predecessors] Like "*,5,*" OR
[Predecessors] Like "*,5"

We do not need to use the iif function in the formulas entered to the custom flag fields since the
Like operator returns logical values.

Regarding operator precedence and associativity; both Like and Between…And operators have
the same precedence and associativity as the comparison operators. Also note that the wildcard
characters (*, ? and #) are treated as literal characters when used in the operands of
Between…And operator.

SAMPLE

72 Mastering Custom Field Formulas

SAMPLE

Inserted Projects and the Custom Fields

We will know explore how Project handles the custom field formulas while working with inserted
projects. Consider two project plan files, Master Project.mpp and Sub Project.mpp. Let us now
discuss several custom field formula scenarios with those files in order to understand how it works
with subprojects:

 Sub Project.mpp’s Number1 field contains 88 as the formula, and the Calculation for task
and group summary rows for this field is set to Use formula. Master Project.mpp’s
Number1 field is blank. This is how Master Project.mpp looks after inserting Sub
Project.mpp:

In order to use the formula and the other settings of the Number1 field in Master
Project.mpp, we need to copy the field to Master Project.mpp by using either the
Organizer dialog box or the Import Field command in the Custom Fields dialog box.
See the results of importing Number1 to Master Project.mpp below:

SAMPLE

74 Mastering Custom Field Formulas

How does it work if we do just the opposite ?; that is, the case where Sub Project.mpp’s
Number1 is blank, but Master Project.mpp’s Number1 has a formula (i.e., 88). See the
results with different Calculation for task and group summary rows settings for Number1
in Master Project.mpp below:

Use formula Rollup: Sum

Here, outdenting Sub Project, to the same outline level as S1, does not change the results
on the summary rows in both pictures.

 The examples above are quite straightforward. Let us now experiment with a different
scenario. Consider the project files below:

This time, Master Project.mpp has the formula 99 in the Number1 field, and the
Calculation for task and group summary rows for this field is set to Rollup: Sum. Sub
Project.mpp’s Number1 field contains 88 as the formula, and the Calculation for task and
group summary rows for this field is set to Use formula.

SAMPLE

Inserted Projects and Custom Fields 75

This is how Master Project.mpp looks after inserting Sub Project.mpp:

Note that both Master Project and Sub Project use their own formulas and the Calculation
for task and group summary rows settings for Number1; see below how indenting Sub
Project changes the rolled-up data of Master Project’s S1:

As it is seen from the results in Number1 at the task level, the master project and the
inserted projects (that is, linked subprojects) may have different formulas, but how
inserted projects contribute to the custom field’s summary level results in the master
project is determined according to the Calculation for task and group summary rows
setting of the custom field in the master file. If the custom field is renamed differently in
both files, then the name in the master project file will be effective.

As shown in the examples, Project does not complain if a custom field’s formula and settings in
inserted projects differ from those in the master project; therefore, in order to obtain accurate
results from the formulas we need to ensure that the inserted projects and the master project
have identical formulas and settings for the custom fields used.

SAMPLE

76 Mastering Custom Field Formulas

Consider the simple schedule below; Number1 has some values corresponding to As and Bs in
Text1, entered by typing in, with rolledup sums at the summary level.

Suppose that you want to see the total values for As and Bs and therefore, you apply an
AutoFilter group to Text1. While collapsing S1 does not affect the resulting group, collapsing the
subproject (not S2) before applying the group changes the results, as shown below:

As a result, always make sure to expand the task outline completely by selecting All Subtasks in
Show Outline command on the VIEW tab before applying the group in a schedule containing
linked subprojects.

SAMPLE

Inserted Projects and Custom Fields 77

Suppose that you do not want to include T1 and T2 in the group, then you can filter them out by
applying the AutoFilter to Number1 (that is, clear the checkboxes for 5 and 10 in the AutoFilter
pane). The result will be as follows:

The resource custom fields defined in a project plan used as a resource pool overwrite all the
corresponding resource custom fields in the project plan files sharing the resource pool.

SAMPLE

Index
Add New Column, 18
Boolean literal, 23
Built-in Functions

category, 34
data types, 39
definition, 33
function description, 38
name, 36
nesting, 44
parameters, 36
reference syntax, 34
return types, 39

Comparisons
date comparison, 83, 204, 205
numeric comparison, 28, 51, 83, 87, 93, 111, 191, 193, 195, 196, 199, 204, 220, 237
string comparison, 27, 28, 51, 83, 93, 96, 97, 99, 192, 193, 195, 198, 199, 203, 204

Conversion and Date/Time functions
CDate, 34, 96, 97, 155, 158, 161, 162, 163, 164, 165, 167, 168, 169, 171, 172, 189, 197, 226, 227, 231,

237, 238
DateSerial, 34, 44, 157, 158, 160, 165, 166, 170, 179, 193
DateValue, 34, 35, 83, 86, 87, 158, 162, 163, 164, 165, 169, 170, 171, 184, 190, 193, 194, 226, 238
Day, 34, 50, 82, 158, 160
Hour, 34, 55, 134, 158, 161, 172, 198, 223
Minute, 34, 158, 161, 198
Month, 34, 158, 160, 161, 166, 179, 180
Second, 34, 158, 161, 198
TimeSerial, 34, 158, 171, 172, 184, 193, 197, 198, 199, 200
TimeValue, 34, 158, 170, 171, 197, 198, 199, 200
Weekday, 34, 39, 55, 158, 180, 181, 183, 184, 185
Year, 34, 158, 160, 166, 179

Conversion and Text functions
Asc, 34, 97, 98
Chr, 34, 98, 229
StrConv, 34, 55, 98, 104

Conversion functions
CBool, 34, 49, 52, 53, 213, 214
CByte, 34, 44, 123
CCur, 34, 41, 123, 124
CDbl, 34, 41, 42, 43, 51, 52, 83, 94, 95, 101, 107, 195, 229
CDec, 34
CInt, 34, 44, 123
CLng, 34, 44, 123, 124
CSng, 34, 41, 44, 199
CStr, 34, 42, 83, 91, 94, 95, 96, 97, 101, 102, 108, 109, 155, 156, 191, 192, 228, 229
CVar, 34
Hex, 34
Oct, 34
Str, 34, 101, 108, 109
Val, 34, 35, 120, 135, 188, 229, 230

Custom field formula. See Formula

SAMPLE

240 Mastering Custom Field Formulas

Custom fields
cross-category field access, 14
Date, Start and Finish, 145

comparisons and arithmetic operations, 190
customizing date display format, 145
date related project level fields, 152
date type resource fields, 151
date type task fields, 150
default times, 147
entering values, 148
functions handling date and time data, 158
hard-coded date and times, 192
how stored, 153
limits, 156
passing dates to functions, 161
setting field value to NA, 194
testing for NA, 194

Duration, 127
customizing default time units, 129
customizing time unit labels, 130
entering values, 129
functions handling duration data, 142
holding duration data, 128
holding work data, 128
limits, 139
time unit conversion factors, 131

Flag and Text, 91
handling text by using functions, 98
returning values to text fields, 94

inserted projects, 73
intermediate, 5
limits, 17
locking, 13
Number and Cost, 111

entering values, 111
returning values, 113

protecting data, 13
renaming

Field Settings dialog box, 9
Rename Field dialog box, 9

summary rows, 58
Custom Fields dialog box

opening, 5
Sections

Calculation for assignment rows, 19
Calculation for task and group summary rows, 17, 62
Custom attributes, 6, 8, 57
Delete button, 57
Field, 6
Import Field button, 58
Rename button. See Rename Field dialog box
Type, 16, 17

SAMPLE

Index 241

Values to display, 64
Date and/or time literal, 22
Date/Time functions

Date, 34, 97, 158, 159, 160, 164, 166, 180, 185, 190
DateAdd, 34, 55, 142, 158, 180, 189
DateDiff, 34, 36, 42, 55, 142, 158, 164, 172, 173, 174, 175, 177, 178, 185, 189, 228, 230, 232, 233, 234,

235
DatePart, 34, 55, 158, 160, 161, 172, 173, 174, 175, 176, 177, 179, 185, 188, 189, 232, 233
IsDate, 34, 49, 50, 158, 161, 196, 205, 207, 209, 210, 212, 213, 214, 216, 238
Now, 34, 97, 158, 159
Time, 34, 35, 38, 39, 158, 159
Timer, 34, 158, 159, 160

Delete Custom Fields dialog box, 18
Empty string, 45
Expression

definition, 21
elements

functions. See Functions
literals, 22
operators, 24

nesting, 31
syntax, 21
type, 21
types explained

Boolean expressions. See logical expressions
comparison expressions, 21, See Comparisons
date expression, 21
logical expressions, 21
numeric expressions, 21
string expressions, 21, 44

Field
definition, 12
entry type

calculated, 18
calculated or entered, 18
entered, 18
null, 18

properties
category, 14
data type. See type
name, 13
type, 14

types explained
custom field, 16
non-custom field, 14

Field reference
category name, 7
definition, 7, 13, 21
initial value, 19
inserting, 7

Format specifiers, 103

SAMPLE

242 Mastering Custom Field Formulas

Formula
#ERROR, 18, 25, 28, 29, 42, 43, 44, 45, 46, 47, 48, 57, 86
case sensitivity, 8
copy/pasting, 10
definition, 6, 21
documenting, 12
elements. See Expression: elements
enabling, disabling, 8
entering, 5
logical errors, 79
predefined constants, 55, 220
saving, 8
syntax check, 8, 84
syntax error, 10, 21, 25, 31, 44, 84
testing, 9
type mismatch, 18
Undo editing, 8

Formula dialog box
opening, 6
Sections

Edit formula, 7
Field button, 7, 19
Function button, 33
Import Formula button, 58
Operator buttons, 24

Functions
Math

Abs, 34, 118, 119, 120, 143
Atn, 34
Cos, 34
Exp, 34
Fix, 34, 118, 119, 120, 121, 122, 123
Int, 34, 53, 83, 118, 119, 120, 121, 122, 143, 159, 179, 180, 193, 199
Log, 34, 196
Rnd, 34
Sgn, 34, 118, 119, 120, 121
Sin, 34
Sqr, 34, 35, 44
Tan, 34

General functions
Choose, 34, 53, 54, 99
IsNull, 34, 49, 50, 54
IsNumeric, 34, 49, 50, 51, 52, 107, 205, 207, 214, 215
iif, 34, 45, 107
Switch, 34, 45, 46, 47, 48, 50, 53, 61, 65, 81, 99

Graphical Indicators
defining, 64

Graphical Indicators dialog box, 64
Sections

Import Indicator Criteria button, 58
Importing

Import Custom Field dialog box. See Import Field button

SAMPLE

Index 243

Import Formula dialog box. See Import Formula button
Import Indicator Criteria dialog box. See Import Indicator Criteria button

Logical literal. See Boolean literal
Logical parameters. See Logical expressions
Logical value. See Boolean literal
Manually scheduled task

evaluating based on task mode, 203
placeholder, 201

Null, 50
Numeric literal, 22
Operators

arithmetic operators, 24
Boolean operators. See logical operators
comparison operators, 27
concatenation operators, 29
logical operators, 28
operand, 24
precedence and associativity, 30
special operators Like, Between...And, 69

Project and Conversion functions
ProjDateConv, 34, 158, 219, 222, 223, 224, 225, 227
ProjDurConv, 34, 135, 137, 142, 219, 221, 222, 227, 230

Project and Date/Time functions
ProjDateAdd, 34, 39, 142, 158, 189, 219, 230
ProjDateDiff, 34, 35, 36, 38, 39, 136, 137, 142, 158, 209, 210, 211, 212, 213, 219, 230, 232, 233
ProjDateSub, 34, 142, 158, 189, 219, 230
ProjDateValue, 34, 50, 158, 162, 163, 168, 194, 200, 219, 227, 235, 238

Project functions
ProjDurValue, 34, 135, 142, 204, 219, 225

Roll-up methods. See Calculation for task and group summary rows
Rounding

arithmetic rounding. See round half up
explained, 115
Round function, 123
round half to even, 26, 117
round half up, 115
rounding off to the nearest even integer, 122

String. See String literal
String literal, 22
String parameters. See String expressions
String value. See String literal
Text functions

Format, 34, 55, 83, 91, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 116, 117, 120, 122, 147, 155,
156, 157, 158, 179, 180, 181, 182, 183, 185, 188, 198, 199, 200, 205, 207, 226

Instr, 34, 70, 100, 101, 229
LCase, 34, 98, 100, 104
Left, 34, 98, 101, 227, 229
Len, 22, 34, 45, 98, 101
LTrim, 34, 98
Mid, 34, 98
Right, 34, 98, 101
RTrim, 34, 98

SAMPLE

244 Mastering Custom Field Formulas

Space, 34, 98
StrComp, 34, 55, 70, 99, 100
String, 34, 42, 45, 98, 107
Trim, 34, 98, 101
UCase, 34, 98, 100, 104

Text string. See String literal
Truncating, 118
Type conversions

explicit, 43
implicit, 43

Week parameters
firstdayofweek, 55, 102, 103, 172, 173, 175, 176, 177, 178, 179, 180, 181, 182, 183, 185, 188
firstweekofyear, 55, 102, 103, 172, 173, 175, 176, 177, 178, 179, 182, 185, 188

Zero-length string. See Empty string

SAMPLE

SAMPLE

SAMPLE

About the Author

Visit the author’s website at www.ismetkocaman.com

All rights reserved. No part of this eBook

may be reproduced, stored in a
retrieval system or transmitted in any form or by any means, without the
prior written permission of the author.

Notice

of Rights

Every effort has been made to ensure the accuracy of the information
herein. However, the information contained in this eBook

is provided
without warranty, either expressed or implied. The author will not be held
liable for any damages to be caused either directly or indirectly by the
instructions contained in this eBook, or by the application software
described herein. The author provides formula examples for demonstration
only, without warranty either expressed or implied.

Notice of Liability

Microsoft is a registered trademark or trademark of Microsoft Corporation
in the United States and/or other countries. All other trademarks mentioned
herein are the property of their respective owners.

The author has no
affiliation with Microsoft Corporation. Screen captures were reprinted with
authorization from Microsoft Corporation. This document is not a

product
of Microsoft Corporation.

Trademark Notice

Copyright 

Ismet Kocaman

eBook’s website: www.ismetkocaman.com/Formulas/eBook.html

http://www.ismetkocaman.com/Formulas/eBook.html

	Initial Pages

	Copyright - Ismet Kocaman
	Front_Cover

	Mastering Custom Field Formulas in MS Project - Second Edition

	Introduction
	Getting Started
	Creating a Formula in Project
	Steps to Follow While Developing Formulas
	Step #1: Determine whether you really need a formula
	Step #2: Define output from the formula
	Step #3: Define input to the formula
	Step #4: Determine which operations the expressions in the formula should perform on the information inputted (or passed)
	Step #5: Test the formula’s syntax and logic
	Step #6: Document the formula

	Fields in Project
	What is a field ?
	What is a field reference in a formula ?
	Properties of a Field
	Field Names
	Field Categories
	Field Types
	Entry Types

	Formulas in Project
	What is a Formula ?
	Literals
	Operators
	Arithmetic Operators
	Comparison Operators
	Logical Operators
	Concatenation Operators
	Operator Precedence

	Built-in Functions
	Built-in functions for the custom fields
	How to use a built-in function in a formula
	Function descriptions
	How to interpret a function description
	Data Types
	How to use data type information
	How to handle the returned values based on the data type information
	How to handle the parameters based on the data type information

	Working with String parameters
	Working with logical values
	Functions accepting logical values: iif and Switch functions
	Functions returning logical values

	Using the Choose function
	Constants Recognized in Formulas

	Settings for the Custom Fields
	How to Delete or Disable a Formula, How to Clear or Protect a Custom Field’s Data
	How to Import a Custom Field
	Custom Fields in Summary Rows
	Rollup Methods

	Graphical Indicators

	Special Operators: Like and Between…And
	Inserted Projects and the Custom Fields
	Errors in Formulas
	Logical Errors
	Syntax Errors
	#ERROR Errors
	How to filter for #ERROR lines in custom fields

	Working with Custom Flag and Text Fields
	Returning Numeric, Date or Logical Values to the Custom Text Fields
	The built-in functions for handling text information
	The StrConv function
	The StrComp function
	The InStr function
	Using Str, CStr and Format functions in formulas
	Format expressions used in the Format function

	Working with Custom Number and Cost Fields
	How to enter values to the custom number and cost fields by typing in
	How do the custom number and cost fields interpret the values returned from the formulas
	Rounding Numbers in Formulas
	How does Project round off the numeric data in the custom fields
	Using the built-in functions to round off the numeric data
	Using the Int or Fix function to truncate the numbers
	Using the Int function to round up the numbers in formulas
	Using the Int and Fix functions to arithmetically round the numbers off
	Some examples of custom rounding on monetary values
	Rounding off to the nearest even integer
	Implementing Excel’s worksheet function Mod in formulas
	Implementing the round-half-to-even algorithm in formulas

	Working with Duration and Work Data
	Duration Type Fields in Project
	How to enter duration and work values in Project
	Customizing Project’s default time units
	Customizing the time unit labels
	How does Project display values in the duration type fields ?

	How does Project determine the conversion factors between the units ?
	How can we change the conversion factors between the units ?
	How are the duration and work data stored in the duration type fields ?
	How to pass the conversion factors to formulas
	Using ProjDurConv or ProjDurValue functions to access Days per month setting in a formula

	How does it affect the schedule if we change “Hours per day” value ?
	Changing the default units in a project plan containing duration and work data
	Limits for the Duration type fields
	Built-in Functions used in Duration and Work Calculations
	Some Examples with Duration Type Fields

	Working with Dates and Times
	Customizing Project’s default date display format
	Default time values
	How to enter date and time in Project
	The Date Type fields in Project
	Referencing the date type task fields in formulas
	Referencing the date type resource fields in formulas
	Using the fields listed under the Project / Date category in formulas

	How does Project store date and time values ?
	Date field limits

	Date and Time Functions
	Date, Time, Now and Timer Functions
	Year, Month and Day Functions
	Hour, Minute and Second Functions
	Passing Dates to Functions As Parameters
	Using Date Strings to Pass Dates to Functions
	Using Date Literals to Pass Dates to Functions
	Date Separators

	DateSerial Function
	CDate Function
	DateValue Function
	TimeValue Function
	TimeSerial Function
	DateDiff and DatePart Functions
	Week and Weekday Number Calculations with DatePart and DateDiff

	Using date arithmetic in week calculations
	Calculating Quarters
	Weekday, WeekdayName and MonthName Functions
	What is the First Day of the Week ?
	Calculating the start and end dates of a week based on a date
	Using a formula to display the system’s first day of week setting
	What is the First Week of the Year ?
	Calculating Week Number of a Date
	DateAdd Function
	Using Today, Tomorrow and Yesterday in Formulas

	Comparisons and arithmetic operations with dates and times
	Using Hardcoded Dates and Times in Formulas
	Setting a Date Field’s Value to NA
	Handling the Initial Value “NA” of a Date Field in Formulas
	Numeric Comparisons to Test for NA
	Using IsDate Function To Test for NA
	Other Methods to Test for NA

	Working with times
	How to compare times in Formulas
	Referencing the default start time in a formula
	How much precision do we need in the time serial ?
	Comparing times
	Other methods to compare times

	Working with Manually Scheduled Tasks
	What is a placeholder task ?
	Formulas performing operations based on task mode
	Formulas working only for manually scheduled tasks
	Processing text information (including blank) of a placeholder task
	Processing valid duration or start/finish date values of a manual task

	Formulas working only for auto-scheduled tasks
	Formulas performing operations on tasks in any task mode

	The New Baseline Fields
	Calculating the variances for manually scheduled tasks
	Formulas to see how the text information in the fields Duration, Start or Finish changes

	The Built-in Functions in Project Category
	Date Separators Used in Date Strings Passed to Functions
	Pj Enumeration Constants Recognized in Formulas
	ProjDurValue function
	ProjDateConv Function
	ProjDurConv function
	ProjDateAdd and ProjDateSub Functions
	ProjDateDiff Function
	ProjDateValue Function
	Using ProjDateValue to Test for NA

	Index

	Final Pages
	Copyright - Ismet Kocaman
	Back_Cover

